Search Results

You are looking at 111 - 120 of 159 items for :

  • "Certified reference materials" x
  • Refine by Access: All Content x
Clear All

Summary  

Instrumental neutron activation analysis was applied to evaluate the chemical composition of metallic materials, namely iron, steel, silicon and ferrosilicon certified reference materials. As, Co, Cr, Mn, Mo, Ni, V and W concentrations were analyzed in the iron and steel samples whereas 21 elements were determined in silicon and ferrosilicon samples. Accuracy and precision results of about 10% were achieved for most elements, indicating that the technique is suitable for the analysis of metallic materials. Interferences of Cr and Mn in V; Fe and Co in Mn; Co in Fe and Cr in Ti were quantified and only the last one was critical to the analysis of the materials employed in this work.

Restricted access

Abstract  

Neutron activation analysis (NAA) methods have been developed for the simultaneous determinations of multielement concentrations in various types of glass and their leachates. The epithermal instrumental NAA (EINAA) method involves the irradiation of samples in a Cd-shielded site for 2–5 min in order to determine levels of of up to 13 elements through their short-lived nuclides. Another 15 elements can be measured via their long-lived nuclides using conventional instrumental NAA (INAA). Accuracy of the methods have been evaluated by analyzing certified reference materials. The limits of detection for all elements are reported. The methods have been applied to sodium borosilicate and sodium calcium aluminosilicate glass samples in order evaluate their suitability as a host matrix for immobilizing high level radioactive waste.

Restricted access

Abstract  

Instrumental neutron activation analysis (INAA), inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) were used for the determination of major and trace elements in sediment samples of the Bouregreg river (Morocco). The reliability of the results was checked, by using IAEA Soil-7 certified reference material. Results obtained by the three techniques were compared to control digestions efficiencies. A general good agreement was found between INAA and both ICP-MS and ICP-AES after alkaline fusion (ICPf). The ICP-MS technique used after acid attack (ICPa) was satisfactory for a few elements. A principal component analysis (PCA) has been used for analyzing the variability of concentrations, and defining the most influential sites with respect to the general variation trends. Three groups of elements could be distinguished. For these groups a normalization of concentrations to the central element concentration (that means Mn, Si or Al) is proposed.

Restricted access

Abstract  

Phosphorus is an essential element for plants and animals, playing a fundamental role in the production of biochemical energy. Despite its relevance, phosphorus is not commonly determined by instrumental neutron activation analysis (INAA), because 32P does not emit gamma-rays in its decay. There are alternative methods for the determination of phosphorus by INAA, such as the use of beta counting or the measurement of bremsstrahlung originated from the high energy beta particle from 32P. Here the determination of phosphorus in plant materials by measuring the bremsstrahlung production was further investigated, to optimize an analytical protocol for minimizing interferences and overcoming the poor specificity. Eight certified reference materials of plant matrices with phosphorus ranging between 171 and 5,180 mg kg−1 were irradiated at a thermal neutron flux of 9.5 × 1012 cm−2 s−1 and measured with a HPGe detector at decay times varying from 7 to 60 days. Phosphorus solutions added to a certified reference material at three levels were used for calibration. Counts accumulated in the baseline at four different regions of the gamma-ray spectra were tested for the determination of phosphorus, with better results for the 100 keV region. The Compton scattering contribution in the selected range was discounted using an experimental peak-to-Compton factor and the net areas of all peaks in the spectra with energies higher than 218 keV, i.e. Compton edge above 100 keV. Amongst the interferences investigated, the production of 32P from sulfur, and the contribution of Compton scattering should be considered for producing good results.

Restricted access

Abstract  

Radioactivity of the nuclides238U(235U),232Th,226Ra,137Cs and40K was measured in soil by direct -ray spectrometry using Ge(Li) detector. Relative laboratory method was used. Soil was dired, powdered, sieved and put into hemetically sealed container. CCRMP certified reference materials and compounds of the above nuclides mixed with fine quartz sand were used as references. Five and four -lines were used for the determination of232Th and226Ra, respectively, to obtain more accurate results. The most significant interferences, caused by the limited energy resolution of the detector, were resolved. In the case of ordinary soils, using one day duration of measurement and 1 kg mass of soil,232Th,226Ra and40K can be determined with less than 10% relative random error. Elevated concentrations of238U(235U) and226Ra were observed in soil samples collected around a coal-fired power plant in Ajka town, Hungary.

Restricted access

Abstract  

A set of certified Reference Materials was prepared consisting of four natural agricultural soils with normal (n) and elevated (e) levels of element contents: CRM 7001 Light Sandy Soil (n), CRM 7002 Light Sandy Soil (e), CRM 7003 Silty Clay Loam (n), and CRM 7004 Loam (e). In these materials, certified and/or information values of the total contents of the elements As, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, V and Zn, and their fractions extractable by aqua regia, boiling and cold 2M nitric acid were derived from an interlaboratory comparison in which 28 laboratories participated. Highly precise and accurate procedures of instrumental neutron activation analysis (INAA) were employed for homogeneity testing and also for certification of the total element contents. For comparation purposes, NIST SRM-2704 Buffalo River Sediment was analyzed by INAA, as well. The INAA results obtained compared very well with the certified and/or information values for four soil CRMs and also with NIST values for SRM-2704. From this agreement, a very high reliability of the new soil CRMs can be inferred.

Restricted access

Abstract  

Thermal neutron capture prompt gamma-ray activation analysis (PGAA) was used to determine mass fractions of H, B, C, N, Na, Cl, K, and S in 2 meat homogenates. Twelve units of candidate Standard Reference Material (SRM) 1546 Meat Homogenate produced by the National Institute of Standards and Technology (NIST) were analyzed to provide NIST with certification data. This SRM is a realistic processed food matrix, ideal for food analysis programs such as the Food and Drug Administration's Total Diet Study. Another meat homogenate, Certified Reference Material LGC 7002 Pork/Chicken (along with NIST SRMs 1549 Non-Fat Milk Powder and 1571 Orchard Leaves) was analyzed for quality control. Candidate SRM 1546 unit-to-unit heterogeneity was <2% for H, Na, Cl, and K, and 3.5% for N and within-unit heterogeneity was <2% for H, N, Cl, and K, and 2.9% for Na, similar to LGC 7002 homogeneity results. Control material mass fractions agreed well with certificate and consensus values. Protein mass fractions, calculated from N results, were 15.2% and 11.9% for candidate SRM 1546 and LGC 7002, respectively. Protein content calculated for SRM 1549 (36.0%) agreed well with known values for dried non-fat milk powder.

Restricted access

Abstract  

Several studies on the influence of heavy metals to the growth of vegetables have been carried out in Cuba by the Ministry of Agriculture in order to evaluate the effects resulting of the continuous application of fertilizers and other materials to the soils. The analysis of metal contents in soil and vegetable samples is often troublesome due to the low concentration levels to be determined. In the the present work EDXRF, AAS and ASV methods were applied and compared for the evaluation of Cr, Ni, Cu, Zn, Cd and Pb contents in red ferralitic soil and Sorghum samples. Several certified reference materials (CRM) (inorganic and organic matrixes) were analyzed in order to evaluate the performance of the analytical procedures and the bias and precision of the results. A study was performed with growing Sorghum in several series of pots where different quantities of metals were added to the soil substrate. The observed correlation between the metal contents in soil and plants as well as the influence of different additions of each metal on the plant growth is also presented.

Restricted access

Abstract  

Homogeneity of the existing (Virginia Tobacco Leaves CTA-VTL-2 (ICHTJ), Apatite Concentrate CTA-AC-1 (ICHTJ), Fine Fly Ash CTA-FFA-1 (ICHTJ) and candidate certified reference materials (CRMs) (IAEA-338 Lichen, IAEA-413 Algae, Spruce Shoots RMF II (Germany)) was studied by neutron activation analysis (NAA). Several samples of small mass (ca. 1 or 10 mg) taken from various containers were analyzed by instrumental NAA and the results for several elements were compared by Fisher's test and t-test with analogous series of results for samples taken from one container. In the second approach, sampling variance was estimated for some elements from overall variance and the components of analytical variance. The results were interpreted with the aid of Ingamells' sampling constant. Particle size distribution of the reference materials was also measured by several techniques. In addition quantitative determinations for some elements were performed and results compared with the certified values. The results of the present study were discussed with reference to suitability of CRMs to microanalytical techniques. It was pointed out that the term "microanalysis" itself is not always unequivocally understood and used.

Restricted access

Abstract  

The intake of leafy vegetables in daily diet is very important to meet our nutritional needs. Vegetables provide the essential elements which are necessary and recommended for human growth. However, due to rapid industrialization and urbanization our environment becomes polluted and this affects the normal growth of agricultural products and composition of environmental species. The elemental concentrations present in the environmental samples are good indicators to assess the toxicological levels due to pollution affects. In the present work we have analysed several vegetable plant samples by instrumental neutron activation analysis to determine the elemental concentrations at major, minor and trace levels. The leafy vegetables like spinach, red leafy veagetable, pui, gourd leaf, lettuce and katoua were chosen as these are extensively consumed by local peple in eastern part of India. We have determined 15 elements in the above mentioned vegetable samples and some of these are essential elements and some are toxic elements. It was found that Na and K were present as major elements, Fe and Zn as minor elements and As, Ce, Cr, Co, La, Mo, Rb, Sc, Sm, Sr as trace elements. The concentration level of Cr was found to be higher than that of recommended value certified by WHO and National environment quality control for human consumption. The validation of our analytical results have been performed by the Z-score tests through the determination of concentrations of the elements of interest in certified reference materials.

Restricted access