Search Results

You are looking at 171 - 180 of 1,467 items for :

  • "thermal behaviour" x
  • Refine by Access: All Content x
Clear All

Summary Several Fe-Ni-P-Si alloys were produced in an amorphous state by mechanical alloying and rapid solidification. Thermal behavior of the as prepared alloys was analyzed and compared with identical alloys stored during 1 and 2 years. During annealing time, several exothermic processes related to the structural relaxation were detected at low temperature and with further crystallization at high temperature. As increasing the storage time, the powdered samples were relaxed at lower temperatures. The activation energy, E, of the main crystallization process varies between 2.7 and 4.7 eV at.-1. The E values obtained remains similar with the storage time. Small contamination from the milling tools was found. Furthermore, powdered alloys are more sensible to oxidation processes than as quenched ribbons.

Restricted access

Abstract  

Synthesis, characterization and thermal behavior of four compounds that have the general formula [Cu{Pd(CN)4}(L)x]n, in which en=1,2-diaminoethane and pn=1,3-diaminopropane (L=en, x=1 (I); L=pn, x=1 (II); L=en, x=2 (III); L=pn, x=2 (IV)) were described in this work. The complexes were studied by elemental analysis, infrared spectroscopy (IR), differential thermal analysis (DTA) and thermogravimetry (TG) and the residues of the thermal decomposition were characterized by X-ray powder diffraction and found as a mixture of CuO and PdO. The stoichiometry of the compounds was established via thermogravimetric and elemental analyses and their structures were proposed as coordination polymers based on their infrared spectra. The following thermal stability sequence was found: IV<I=II<III.

Restricted access

Abstract  

Samples of an organic–inorganic hybrid were prepared by solvolysis and polycondensation in formic acid of tetraethoxysilane and diethylbenzyl phosphonate, simultaneous with the oxidative polymerization of aniline. The thermal behavior of the samples in dynamic air atmosphere and non-isothermal conditions was determined by a coupled thermogravimetric/evolved gas analysis. Two significant thermal events were established: the elimination from the polymeric matrix of low mass molecules, respectively the thermooxidative degradation of the organic part of the matrix. The kinetic analysis was performed with the Flynn-Wall-Ozawa, Friedman and modified Non-Parametric-Kinetic methods. Only the last one allowed an objective analysis of the first process as a process of two simultaneous thermally induced phenomena with the kinetic functions of the type αm(1 − α)n.

Restricted access

Abstract  

The effect of CuO on the thermal behaviour of Zr/KClO4 primer mixtures was studied by thermoanalytical techniques, and the Bruceton method and its related calculation. It was found that the CuO catalytically promoted the decomposition of Zr/KClO4 primer mixtures and shifted the exothermic peak of DSC curves to lower temperatures. In addition, the Zr/KClO4 primer mixture containing CuO had a significant effect on the firing characteristics of electro-explosive devices.

Restricted access

Abstract  

The thermal behavior of chitosan (CS)/natural rubber latex (NRL) blends has been studied by thermogravimetry (TG) and differential scanning calorimetry (DSC). Decomposition behavior of CS changes with the addition of NRL. The effect of blend composition on the amount of residue remaining at various temperatures has been studied. Activation energies of degradation have been calculated using Horowitz-Metzger equation. From the activation energy values, it is found that among the series of the blend compositions, CS15NRL85 exhibits better thermal stability. DSC studies reveals that the CS/NRL blends are thermodynamically incompatible. This is evident from the presence of two glass transitions, corresponding to CS and NRL phases in the blend.

Restricted access

Abstract  

The silica waste originating from a geothermal power plant in Mexico was investigated with the aim of finding its applicability as a raw secondary material for ceramics production. The thermal behaviour of the original silica waste (containing NaCl and KCl from marine brine) and of the purified silica was characterized by means of DTA/TG, emanation thermal analysis (ETA) and thermodilatometry (TD). The reactivity of the purified silica waste mixed with CaCO3 (1.8 mass%) was characterized by means of ETA, DTA and TG. The microstructures and phase compositions of the final products prepared by heating in air were tested by means of X-ray diffraction and of scanning electron microscopy coupled with electron probe X-ray microanalysis. The thermal analysis methods allowed determination of the optimal conditions for thermal treatment of the silica waste in order to obtain partly sintered porous materials for use as refractory bricks.

Restricted access

Abstract  

The thermal behaviour of styrene butadiene rubber (SBR)/poly (ethylene-co-vinyl acetate) (EVA) blends was studied by using thermogravimetry (TG) and differential scanning calorimetry (DSC). The effects of blend ratio, cross-linking systems and compatibilization on the thermal stability and phase transition of the blends were analyzed. It was found that the mass loss of the blends at any temperature was lower than that of the components, highlighting the advantage of blending SBR and EVA. The addition of compatibilizer was also found to improve the thermal stability. DSC studies indicated the thermodynamic immiscibility of SBR/EVA system even in the presence of the compatibilizer. This is evident from the presence of two different glass transition temperatures, corresponding to SBR and EVA phases in both compatibilized and uncompatibilized blends.

Restricted access

Abstract  

The thermal behavior for three homologous series of cationic geminis surfactants of the type n-2-n, alkanediyl-α,ω-bis(alkyldimethylammonium bromide), with n = 12, 14, 16, and 18, and sodium alkyl sulfates, SCmS, with m = 12, 14, and 16, is reported here. The cationic/anionic molar ratio is kept at 1:2 (equicharged mixtures), and salt is also present. Polarizing light microscopy and differential scanning calorimetry show a stepwise fusion for the mixtures with appearance of several mesophases between the crystalline structures and the isotropic liquid. A main endothermic transition is observed, associated with partial chain melting and consequent loss of crystalline order, followed by a transition to a smectic liquid crystal. The phase transition thermodynamics is interpreted in terms of an interplay between van der Waals chain–chain interactions and ionic head group interactions.

Restricted access

The thermal behaviours of polystyrene (PS), polymethylacrylate (PMA), polyacrylonitrile (PAN), polystyrene-co-methylacrylate [P(S: MA)](alternate and random), polystyrene-co-acrylonitrile [P(S: AN)] (alternate) and a terpolymer of styrene, methylacrylate and acrylonitrile [P(S: MA: AN)] are discussed on the basis of non-isothermal thermogravimetric studies. The thermal stabilities of the copolymers have been found to be intermediate between of those of the individual homopolymers. The stability of the [P(S: AN)] copolymer is higher than those of the individual homopolymers. The activation energy values are also in accordance with the thermal behaviours of these polymers.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Rodica Olar, Mihaela Badea, Oana Carp, Dana Marinescu, Veronica Lazar, Carmen Balotescu, and Anca Dumbrava

Abstract  

The investigation concerning the synthesis, spectrochemical and biological properties as well as thermal stability of some tiosulfato-and sulfato copper(II) complexes of type [Cuphen(S2O3)(H2O)n]·mH2O (phen: 1,10-phenanthroline; (1): n=2, m=0; (2): n=2, m=0.5) and respectively [Cuphen(OSO3)(H2O)n] ((3): n=0; (4): n=2) are presented in this paper. The bonding and stereochemistry of the complexes have been characterised by IR and electronic studies. The in vitro qualitative and quantitative assays of the antimicrobial activity of the tested compounds vs. planktonic and adherent Gram negative bacterial strains isolated from different surfaces in the hospital environment demonstrated that all compounds exhibited very good antimicrobial activity vs. Escherichia coli, Klebsiella sp. and Enterobacter sp. with very low M.I.C. values. The thermal analysis has evidenced the thermal intervals of stability and also the thermodynamics effects that accompany them both in synthetic air and argon. The thermal behaviour is complex according to DTG and DSC curves including dehydration as well as thiosulfate and phenanthroline decomposition.

Restricted access