Search Results

You are looking at 11 - 13 of 13 items for :

  • "flag leaf area" x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All

The aim of this study was to observe the influence of the amount of precipitation during the grain filling period on nitrogen uptake and grain yield of spring barley fertilized by ammonium injection. Conventional nitrogen fertilization before sowing and CULTAN (Controlled Uptake Long Term Ammonium Nutrition) injection fertilization were compared during a 5-year small-plot field experiment under the conditions of Central Europe. In contrast to conventional nitrogen fertilization, with the CULTAN treatment there was observed no significantly negative effect of below-average precipitation during the grain filling period on post-heading (BBCH 51) nitrogen uptake from the soil with applications of 80 and 130 kg N.ha−1, grain yield, nitrogen uptake efficiency (NUpE) and thousand-grain weight with an application of 80 kg N.ha−1, nor there was a significantly positive effect on the contribution of nitrogen translocation to total nitrogen in the grain with an application of 130 kg N.ha−1. CULTANtreated plants achieved a significantly higher harvest index than conventionally treated plants with an application of 80 kg N.ha−1. Below average precipitation during the grain filling period had a significantly negative effect on nitrogen use efficiency (NUE) with both treatments. Using the CULTAN treatment leads to significantly lower flag leaf area compared to conventional treatment with an application of 80 kg N.ha−1. The application of 130 kg N.ha−1 brings no benefits to spring barley production.

Restricted access

The effect of four rates of nitrogen (N) fertilisation (0, 80, 160, 240 kg ha−1) on the growth and yield components of three winter wheat varieties with different maturity dates (Mv Toborzó — extra early, Mv Palotás — early, Mv Verbunkos — mid-early) was analysed in a long-term experiment laid out in a two-factorial split-plot design with four replications in the years 2007–2009. The dry matter production of the whole plant and of individual plant organs, the maximum leaf area, the area of the flag-leaf and all the yield components except the thousand-kernel weight were significantly the greatest in the N160 or the N240 treatments. Averaged over the varieties and years the grain yield in the N treatments was N0: 5.5, N80: 7.1, N160: 7.3 and N240: 7.5 t ha−1. Averaged over N treatments and years the variety Mv Verbunkos had the highest dry matter production, stem mass, spike mass, number of grains per spike and grain yield. Mv Verbunkos had the greatest leaf area in the favourable years of 2008 and 2009 and the greatest flag-leaf area in 2008. Averaged over N treatments and varieties the dry matter production per plant, the leaf and stem mass, the number of spikes per square metre and the thousand-kernel weight were greatest in 2007. The spike mass was lowest in 2007 and had higher, very similar values in 2008 and 2009. The maximum leaf area per plant, the area of the flag-leaf, the number of grains per spike and the grain yield were highest in 2008. The values and dynamics of the growth parameters gave a good characterisation of the effect of the treatments (N fertilisation, variety, year) on plant production (yield, yield components) in various stages of growth.

Restricted access

Dimmock, J.P.R.E., Gooding, M.J. 2002. The effects of fungicides on rate and duration of grain filling in wheat in relation to maintenance of flag leaf area. J. Agri. Sci. 138 :1–16. Gooding M

Restricted access