Search Results

You are looking at 11 - 20 of 1,590 items for :

  • "heating rate" x
  • Refine by Access: All Content x
Clear All
Journal of Thermal Analysis and Calorimetry
Authors:
Katsumi Katoh
,
Shunsuke Ito
,
Shuhei Kawaguchi
,
Eiko Higashi
,
Katsuyuki Nakano
,
Yuji Ogata
, and
Yuji Wada

Abstract  

In the previous study, it was observed that the stability of nitrocellulose (NC) cannot be determined by thermal analyses such as differential scanning calorimetry (DSC) at heating rates of 1–10 K/min. This was because the thermal curves of NC samples with different stabilities could not be distinguished from one another. In this study, we explain why such thermal analyses cannot be used to evaluate the thermal stability of NC and identify the conditions under which thermal analyses can be used for this purpose. We investigated the effect of heating rate on the thermal behavior of pure NC and NC stabilized with diphenylamine (DPA) or akarditeII (AKII), which is a conventional stabilizer, by using the heat flux calorimeter (C80). At high heating rates (0.2–0.3 K/min), only single exothermic peak was observed in the thermal curves of both pure NC and NC/DPA and the thermal curve of pure NC was practically similar to that of NC/DPA. At low heating rate (0.02 K/min), two exothermic peaks were observed for both pure NC and NC/DPA. The heat amount of the first peak depended on the partial pressure of O2 in the atmosphere. The first peak in the thermal curve of NC/DPA was slightly suppressed as compared to that of pure NC. These results indicate that the stability of NC probably depends on the first exothermic peak that represents oxidation of NC by atmospheric O2. From this, on the thermal analyses at high heating rates, thermal curves of pure NC and NC/DPA could not be distinguished from one another. This is because the decomposition of NC itself occurs in the second exothermic peak before the oxidation of NC by atmospheric O2 in the first peak, which is attributed to the stability of NC. The results of the thermal analyses under isothermal conditions at 393 K in an O2 atmosphere revealed that the induction period of NC/DPA and NC/AKII was longer than that of pure NC. From these results, it is speculated that the stability of NC can be evaluated by thermal analyses carried out under O2-rich conditions at low heating rates.

Restricted access

Abstract  

A differential method is proposed which uses local heating rates to evaluate non-isothermal kinetic parameters. The method allows to study the influence of the deviation of the true heating rate with respect to the programmed one on the values of the kinetic parameters. For application, the kinetic parameters of the following solid-gas decomposition reaction were evaluated: [Ni(NH3)6]Br2(s)→[Ni(NH3)2]Br2(s)+4NH3(g). The results obtained revealed significant differences between the values of the non-isothermal kinetic parameters obtained by using local heating rates and those obtained by using the programmed heating rate. It was also demonstrated that the kinetic equation which makes use of the local heating rates permits a better description of the experimental (α, t) data than the kinetic equation which uses the programmed constant heating rate.

Restricted access

The thermal decomposition of Eucalptus Camaldulensis and Cotton Stalks at different heating rates showed three exothermic peaks. The heating rate is the factor that affects their sharpness and position. The peaks are sharp at low heating rates. IR spectra of pyrolized residue at different temperature were also studied.

Restricted access

A near-linear representation of the linear heating rate is presented which converts the exponential integral into an integrable form and allows a simple determination of the activation energy to high accuracy.

Restricted access

Abstract  

The apparent specific heat of coal was measured by employing a computational calorimetric technique during continuous pyrolysis at heating rates of 10, 25 and 100C min-1. For all of the examined heating rates, the apparent specific heat was found to be approximately 1.4 kJ kg-1 K-1 at room temperature. When the sample reached decomposition temperature (~410C), the specific heat increased to 1.9 kJ kg-1 K-1. From this point, the apparent specific heat was greatly influenced by the coal reaction mechanism. For this purpose a detailed gas analysis was carried out for the three examined heating rates. It was found that with increased heating rates, the devolatilisation reactions were shifted to higher temperatures, as reflected in the measured apparent specific heat.

Restricted access

Abstract  

This work refers to a study of the thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7 tetrazocine (HMX) by differential scanning calorimetry (DSC) in non-isothermal conditions, with heating rates from1 to 25C min−1. The influence of the heating rate, the particle and the sample size were verified. The activation energy was calculated using the peak temperature shift method, proposed by Ozawa and a significant variation in the results was observed according to the range of the used heating rates. As the heating rate was increased, different conversions and self-heating effects were observed at the respective DSC peaks, indicating that the use of this method was inadequate and it may lead to incorrect results, which, in turn, could explain the wide range of activation energy values published in literature. At lower heating rates HMX decomposition occurs on the solid state and at higher ones decomposition occurs after melting practically at the same temperature, which does not depend on the heating rate.

Restricted access

Abstract  

The paper deals with the influence of the deviation of the true heating rate with respect to the programmed one on the values of non-isothermal kinetic parameters for the solid-gas thermal decompositions of CaC2O4.H2O and [Ni(NH3)6]Br2. An original method, based on integration over small ranges of the variables and making use of local heating rates, was applied in order to determine the non-isothermal kinetic parameter values. The results show significant differences between values of non-isothermal kinetic parameters obtained by using true local heating rates and those obtained by using the programmed heating rate.

Restricted access

Abstract  

Aluminum (Al) nanopowders with mean diameter of about 50 nm and passivated by alumina (Al2O3) coatings were prepared by an evaporation route: laser heating evaporation. Thermal properties of the nanopowders were investigated by simultaneous thermogravimetric-differential thermal analysis (TG-DTA) in dry oxygen environment, using a series of heating rates (5, 10, 20, 30, 50 and 90°C min−1) from room temperature to 1200°C. With the heating rates rise, the onset and peak temperatures of the oxidation rise, and the conversion degree of Al to Al2O3 varies. However, the specific heat release keeps relatively invariant and has an average value of 18.1 kJ g−1. So the specific heat release is the intrinsic characteristic of Al nanopowders, which can represent the ability of energy release.

Restricted access

The dissociation of carbonate materials under a high heating rate has been studied by means of specially constructed original apparatus which allows avoidance of the influence of gas diffusion on the decarbonation process, and acceleration of the measurements.

Restricted access

Alkaline fading of bromophenol blue was chosen for the investigation of the effect of heating rate on the activation energies derived from the dynamic kinetic method. Freeman and Carroll's treatment was adopted to compute the activation energies from experimental data taken with three heating rates: namely 1°, 0.5° and 0.25°/min. It was found that the activation energy increases as the heating rate decreases. This is attributed to the non-equilibrium conditions. By extrapolating to zero heating rate, the activation energy obtained is comparable to that obtained via classical isothermal kinetics.

Restricted access