Search Results
) studies. In Levelt's (1989) model, the parallel processing of different components, the monitoring of inner speech, the detection of erroneous outputs, and covert repairs all occur via three loops that check the output of each process involved. The first
Római kori fibulák az Aquincum/Budapest-Graphisoft Park területén végzett feltárások anyagából
Roman fibulae from the cemetery of the civil town in Aquincum/Budapest-Graphisoft Park
. , Balázs , P. , és Csapláros , A. (Szerk.), A savariai Isis szentély , Vol. A(1) . Sistrum, Szombathely Megyei Jogú Város Önkormányzata , Szombathely , 153 – 164 . Berton , L. ( 2003 ). Les fibules zoomorphes gallo-romaines . Detection Passion
< DL 0.04 1.05 < DL 0.20 0.05 0.02 Fig. 10. Places where measurements were taken on the surface of the copper jug from grave 1660/3. The following were found on the jug but below the detection limit (DL): silver, gold, cobalt, manganese, chromium, and
Summary
A new high-performance liquid chromatography (HPLC) method has been developed and validated for determination of enantiomeric purity of thiazolidine-2-carboxylic acid within a short run time of less than 10 min. The method was based on pre-column derivatization of thiazolidine-2-carboxylic acid with aniline, and complete separation of enantiomers has been achieved on a Chiralcel OD-H analytical column (250 × 4.6 mm) using n-hexane-isopropanol (85:15 v/v) as mobile phase at a flow rate of 1.0 mL min−1 under UV and optical rotation (OR) detection. Detection wavelength was set at 254 nm. Then the effects of mobile phase and temperature on enantioselectivity were further evaluated. The method was validated with respect to precision, accuracy, linearity, limit of detection (LOD), limit of quantification (LOQ), and robustness. The recoveries were between 98.5 and 101.3% with percentage relative standard deviation less than 1.16%. The LOD and LOQ for the aniline derivatives of (+)-thiazolidine-2-carboxylic acid were 4.9 and 16.4 μg mL−1 and for the aniline derivatives (−)-thiazolidine-2-carboxylic acid were 5.1 and 17.2 μg mL−1, respectively.
Abstract
The article gives a brief survey of the chequered critical history of Blake reception, from the beginning to our day. Four major trends are outlined: 1. detection of basic documents 2. appropriation and interpretation 3. professionalisation of Blake studies; assimilation of the oeuvre into the canon of the mainstream of English literature 4. rediscovery of "dangerous" Blake; defacing the monument erected by previous scholars. As Blake's work is peculiarly available, and simultaneously peculiarly resistant, to recent changes to critical awareness, special attention is paid to three of the most distinctive tendencies and debates that define the past two decades of Blake scholarship: deconstruction, new-historicism and feminist argument.
In October 2012 the workshop entitled “Reading Past and Present Landscapes in Central Europe” was held in Hungary. During the workshop, which was focused on exchanging ideas and experience concerning remote sensing methods of detection and registering archaeological sites, a large Roman site near the village of Sárbogárd in Nagyhörcsökpuszta was detected. The area of the site, its location, and the finds suggest that it could have played an important role in the region. This paper presents the results obtained from geophysical prospection and field walking, as well as the results of pottery analysis.
Summary
In this research paper we describe validated high-performance liquid chromatographic (HPLC) and high-performance thin-layer chromatographic (HPTLC) methods for simultaneous analysis of tamsulosin hydrochloride and dutasteride in tablet formulations. HPLC was performed on a C18 column with 85:15 (υ/υ) methanol-0.02 m ammonium acetate buffer (pH 9.5, adjusted with triethylamine) as mobile phase. HPTLC was performed on aluminium foil-backed silica gel G60F254 layers with toluene-methanol-triethylamine 9:1.5:1 (υ/υ/υ) as mobile phase. In HPLC, quantification was achieved by photo diode-array (PDA) detection at 274 nm over the concentration range 1–20 μg mL−1 for both; mean recovery was 98.18 ± 0.698 and 99.94 ± 0.611% for TAM and DUTA, respectively. In HPTLC, quantification was achieved by UV detection at 280 nm over the concentration range 200–2000 ng per band for both; mean recovery was 99.66 ± 0.892 and 100.05 ± 1.012% for TAM and DUTA, respectively. These methods are simple, precise, and sensitive, and are suitable for simultaneous analysis of TAM and DUTA in tablet formulations.
Summary
A simple isocratic HPLC-UV assay for measurement of total and free melphalan concentrations in human plasma is described. Samples were prepared by methanol precipitation (total melphalan assay) and ultrafiltration (free melphalan assay). On a 25 cm × 4.6 mm C18 column with 0.016 m mixed soldium phosphate citrate buffer (pH 3.75)-acetonitrile 87:13 as mobile phase, at a flow rate of 1 mL min−1, the retention time of melphalan was 11.5 min. Detection was at 254 nm. For total melphalan assay response was a linear function of concentration up to 40 μg mL−1, with excellent interday precision (<6% for 0.5–40 μg mL−1 melphalan), accuracy (<2% deviation from the true concentration), and recovery (91–110%). For free melphalan assay response was a linear function of concentration up to 2.5 μg mL−1, with good precision (<11% for 0.7–2.5 μg mL−1 melphalan) and recovery (89–93%). Detection limits were 0.1 μg mL−1 and 0.05 μg mL−1 for total and free melphalan assays, respectively. The assays were clinically applied in a study of myeloma patients.
Summary
A stability-indicating reversed-phase high-performance liquid chromatographic method has been developed for analysis of gemifloxacin in tablet formulations. When the drug was subjected to forced degradation under acidic, basic, thermal, oxidative, and photolytic conditions, the degradation products produced were successfully separated on a 250 mm × 4.6 mm, 5-μm particle, C18 column with ammonium acetate buffer (pH 2.7; 0.05 m)-acetonitrile 70:30 (υ/υ) as mobile phase at a flow rate of 0.7 mL min−1. Diode-array detection was performed at 272 nm. The method was validated in accordance with ICH guidelines. Response was a linear function of concentration over the range 0.256–128 μg mL−1 (correlation coefficient 0.9990). The limits of detection and quantification were 10 and 30 ng mL−1, respectively. Separation of gemifloxacin from its stress-induced degradation products and excipients was adequate; resolution was >1.5 within 11 min. The purity index for the gemifloxacin peak after all types of stress was >0.999, indicating complete separation of the analyte peak from the degradation products. The method can therefore be regarded as stability-indicating. It is rapid, and suitable for purity and assay determination not only for routine quality control but also in stability studies.
Summary
A stability-indicating gradient reverse-phase liquid chromatographic method was developed for the quantitative determination of process-related impurities and forced degradation products of oxcarbazepine in pharmaceutical formulation. The method was developed by using Inertsil cyano (250 × 4.6 mm) 5 μm column with mobile phase containing a gradient mixture of solvent A (0.01 M sodium dihydrogen phosphate, pH adjusted to 2.7 with orthophosphoric acid and acetonitrile in the ratio of 80:20 v/v) and B (50:40:10 v/v/v mixture of acetonitrile, water, and methanol). The flow rate of mobile phase was 1.0 mL min−1. Column temperature was maintained at 25°C and detection wavelength at 220 nm. Developed reverse-phase high-performance liquid chromatography (RP-HPLC) method can adequately separate and quantitate five impurities of oxcarbazepine, namely imp-A, imp-B, imp-C, imp-D, and imp-E. Oxcarbazepine was subjected to the stress conditions of oxidative, acid, base, hydrolytic, thermal, and photolytic degradation. Oxcarbazepine was found to degrade significantly in acid, base, and oxidative stress conditions. The degradation products were well resolved from oxcarbazepine and its impurities. The developed method was validated as per International Conference on Harmonization (ICH) guidelines with respect to specificity, linearity, limit of detection and quantification, accuracy, precision, and robustness.