Search Results
Abstract
Specific surface, S, of CSH-gel particles of disordered layered structure, was studied by water sorption/retention in two cement pastes differing in strength, i.e. C-33 (weaker) and C-43 (stronger), w/c=0.4. Hydration time in liquid phase was t h=1 and 6 months, followed by hydration in water vapour either on increasing stepwise the relative humidity, RH=0.5→0.95→1.0 (WS) or on its lowering in an inverse order (WR). Specific surface was estimated from evaporable (sorbed) water content, EV (110C), assuming a bi- and three-molecular sorbed water layer at RH=0.5 or 0.95, respectively (WS). On WR it was three- and three- to four-molecular (50 to 75%), respectively, causing a hysteresis of sorption isotherm. At RH=0.5 the S increased with cement strength from 146 m2 g-1 (C-33, 1 m) to 166 m2 g-1 (C-43, 1 m) and with hydration time to 163 (C-33, 6 m) and to 204 m2 g-1 (C-43, 6 m). At RH=1.0 (and 0.95), higher S-value were measured but these differences were smaller: S amounted to 190-200 m2 g-1 in C-33 (1 and 6 m) and 198-210 m2 g-1 in C-43 (1 and 6 m). Thus no collapse occurred on air drying of paste C-43 (6 m).
researchers [ 11 , 12 ], this activation is effective when the pH of the aqueous phase is higher than 11.5 due to cement hydration or alkali-activation, whilst others claim a value of 12 [ 3 ]. From then onwards, the reaction of BFS with CH takes place and
Summary Previous study of the hydration and ageing products of two cement pastes created the basis for the postulate of the course of solid-state reactions between the portlandite Ca(OH)2 and the CO2 from air in the hydrated and air dry cement. XRD basal spacing d(001) of portlandite exceeded the nominal value and increased with ageing, with the wetting and drying procedure and with carbonate content of the paste, indicating that a part of OH- ions was gradually substituted by CO3 2- ions, which are about twice bigger. IR spectroscopy showed a considerable content of portlandite, of CO3 2- of water and silicates. Also HCO3 - H2O and CO2 in cavities between hexagonal rings and hexagonal hydrates were indicated. By MS (mass spectrometry) in vacuum the evaporation of sorbed water was detected at 100-120°C, of gel water at 350°C of portlandite water at 400°C and of high temperature water between 500 and 700°C, simultaneously with CO2 escape. Slightly higher peak temperatures were found by the TG test either in air or in argon. From these results and from geometric considerations it is postulated that the solid-state reactions take place on ageing of the cement paste and on its heating: hexagonal portlandite?calcium carbonate hydroxy hydrate?calcium carbonate hydrate?hexagonal vaterite and/or orthorhombic aragonite?rhombohedral calcite The analysis of the standard files of the calcium carbonate hydroxy hydrates supports this postulate and indicates a gradual transformation.
assessment of mineralogical composition and texture of modified clinkers [ 1 , 4 ]. Data on combined effect of different type of compounds or regarding the influence of foreign ions on the cement hydration and hardening processes are less numerous [ 4 – 8
]. One of the most significant conditions deciding about the kind of created products is the temperature of hydration. Below ca., 15 °C, CA—the main hydraulic phase of aluminate cements, hydrates to give CAH 10 ; at the temperature of ca., 15–25 °C
agents are presently used all over the world. In desert (hot and dry) climate regions, self-curing concrete will increase concrete strength. According to the study, internal curing improves cement hydration at the start of the procedure. Self
Summary Two hydrated and aged cement pastes from India (NCB), w/c=0.4, of a similar chemical composition but of a different specific surface and different strength (OPC, C-33 and C-43), hydrated at w/c=0.4 for 1 month, were studied by XRD after 1 year and 5-6 year ageing on contact with air. They were tested by static heating (SH) in fresh state, and by DTA/DTG/TG, IR and mass spectrometry (MS), after ageing, presented elsewhere. The main XRD peaks of (i) portlandite were decreasing with T and disappearing about 450°C, (ii) calcite peak at room T was small and broad, it increased gradually, especially after portlandite disappearance; above 600°C it was lowered and it was lost above 700°C. Important variation in the d(001) of portlandite with ageing was observed, exceeding the standard value of d(001)=4.895 Å (72-0156). It was higher in the paste C-33 (4.925-4.936 Å), containing more carbonates, than in the paste C-43 (4.916-4.927 Å). Small variations only were found in the value of d(101), i.e. 2.627-2.635 Å (nominally 2.622 Å), whereas the d(104) of calcite could be used as internal standard and other calcium carbonates (vaterite and aragonite) showed a small variation only. The increase ind(hkl) with temperature was straight linear (in portlandite ?d(001)=0.095 Å, at 30-400°C) and the thermal expansion coefficient estimated thereform was high (4.75-4.95·10-5 K-1). Close to the T of decomposition the ?d/?T became steeper. The thermal variation of d(104)=3.035 Å of calcite (?d=0.015 Å at 30-400°C) was smaller than that ofd(101) of portlandite (?d=0.025 Å at 30-400°C) and was similar in C-33 and C-43. The thermal expansion coefficient was 1.54 10-5 K-1, thus higher than the reported aa=0.65·10-5 K-1.
Abstract
Main hydration products of two cement pastes, i.e. CSH-gel, portlandite (P) (and specific surface S) were studied by static heating, and by SEM, TEM and XRD, as a function of cement strength (C-33 and C-43) hydration time (th) and subsequent hydration in water vapour.Total change in mass on hydration and air drying, Mo, increased with strength of cement paste and with hydration time. Content of water escaping at 110 to 220°C, defined as water bound with low energy, mainly interlayer and hydrate water, was independent on cement strength but its content increased with (th). Content of chemically bound (zeolitic) water in CSH-gel, escaping at 220-400°C, was slightly dependent on strength and increased with (th). It was possibly derived from the dehydroxylation of CSH-gel and AFm phase. Portlandite water, escaping at 400-500°C, was independent on cement strength and was higher on longer hydration. Large P crystals were formed in the weaker cement paste C-33. Smaller crystals were formed in C-43 but they increased with (th). Carbonate formated on contact with air (calcite, vaterite and aragonite), decomposed in cement at 600-700oC. It was high in pastes C-33(1 month) and C-43(1 month), i.e. 5.7 and 3.3%, respectively; it was less than 1% after 6 hydration months (low sensitivity to carbonation) in agreement with the XRD study showing carbonates in the air dry paste (1month), and its absence on prolonged hydration (6 months) and on acetone treatment. Water vapour treatment of (6 months) pastes or wetting-drying increased this sensitivity.Nanosized P-crystals, detected by TEM, could contribute to the cement strength; carbonate was observed on the rims of gel clusters.
Summary
The hydration products in two aged cement pastes (DTA/DTG/TG) were compared with those in fresh ones (static heating, SH) and were also studied by mass spectrometry (MS), IR and thermo XRD-analysis. The products considered here were: the sorbed water, the CSH gel including hydrates, portlandite, calcite, aragonite and vaterite. Except carbonates their content was higher in the stronger paste C-43, than in C-33, but lowered with ageing (only the CSH gel water remained approximately unchanged). The sorbed water content became with time lower and similar in both pastes (it evaporated up to 155-185C in TG); the escape of the rest moved to higher temperatures (500-700C). The three DTG peaks at 200-400C indicated jennite-like phase in the CSH gel; the mass loss (155-460C) was higher on ageing due to development of organic matter, especially in C-43 (DTA, TG, IR). Portlandite content changed little and carbonate content increased considerably. They decomposed in air at 470 and 720-740C, in argon at 450 and 680-710C and in vacuum at 400 and 630C, respectively (DTG peak, XRD). Between 500 and 700C the simultaneous evolution of H2O and CO2was observed by MS, which is attributed to dehydroxylation of jennite-like phase and/or to decomposition of some carbonate hydrate and/or hydrocarbonate (three peaks on CO2evolution curve, MS). The d(001) peak of portlandite exceeded the nominal value and will be analyzed separately.
Abstract
Thermokinetic analysis of cements hydration under nonisothermal conditions was performed. The influence of the application moment, intensity and duration of heat effect on the velocity and completeness of the character of hydration was estimated.