Search Results
Isothermal cure characterization of dicyclopentadiene
The glass transition temperature and conversion
Abstract
Conversion (α) and the glass transition temperature (T g) were investigated during the isothermal cure of endo-dicyclopentadiene (DCPD) with a Grubbs catalyst for different temperatures using differential scanning calorimetry. Conversion vs. In (time) data at an arbitrary reference temperature were superposed by horizontal shift and the shift factors were used to calculate an Arrhenius activation energy. Glass transition temperature vs. conversion data fell on a single curve independent of cure temperature, implying that reaction of the norbornene and cyclopentene ring of DCPD proceeds in a sequential fashion. Implications of the isothermal reaction kinetics for self-healing composites are discussed.
Abstract
Differential scanning calorimetry was used to study the influence of an epoxy reactive diluent, vinylcyclohexane dioxide, on the curing reaction of a polymeric system composed of diglycidyl ether of bisphenol A (n=0) and 1,2-diaminecyclohexane (DCH). Heat evolution and glass transition temperature, were measured in terms of the added diluent percentage. Experimental results show that both the curing degree and the glass transition temperature of the polymeric system decrease with an increase in the diluent percentage. Dynamic mechanical analysis of several samples also showed that T g decreases with the increase of diluent percentage, thus corroborating DSC measurements.
Abstract
The thermal characterization (DSC and TG) of benzylcellulose derivatives prepared from the benzylation of bleached Pinus Kraft pulp is described in this paper. The objective of this study was to examine the changes in glass transition temperature (T g) and the thermal stability of the benzylated product as a function of the benzylation extent (degree of substitution). The DSC analysis showed that the benzylcelluloses can display glass transition temperature at two different regions and that thermal stability is slightly higher than that of the parent cellulose.
Abstract
A sensitive method to characterize the thermomechanical behaviour of fiber reinforced composites is the dynamic mechanical thermoanalysis (DMTA) method. A Round-Robin-test with five different institutes was conducted to determine the role of the fiber orientation, processing conditions, test apparatus, the mode of loading, and the matrix materials on the determination of the glass transition temperature (Tg). The result shows that the DMTA is a suitable method to analyze Tg of long fiber composites. However, some major problems have to be taken into consideration: - A direct comparison of results from different DMTA-systems is not possible - The real temperatures in the specimens deviate from the temperatures displayed by the DMTA measuring system - There is no clear and common evaluation method for the glass transition temperature.
Abstract
The paper describes results of a study of glasses of the type Cux (AsSe1.4 I0.2 )100–x for x =0, l, 5, 10, 15, 20 and 25 at% Cu, by the methods of thermomechanical analysis. Values of the thermal coefficients of linear expansion in solid and visco-plastic phase were determined and the dependence of this parameter on copper concentration was established. The experimental method used enabled the determination of characteristics glass transition temperature and the temperature of the beginning of deformation, and it was found that these parameters increase with increase in the copper content.
Abstract
Magnesium aluminum silicate (MAS) glass samples with different concentrations of alumina (7.58 to 14.71 mol%) were prepared by melt and quench-technique. Total Mg content in the form of MgF2+MgO was kept constant at 25 mol%. MAS glass was converted into glass-ceramics by controlled heat treatment at around 950C. Crystalline phases present in different samples were identified by powder X-ray diffraction technique. Dilatometry technique was used to measure the thermal expansion coefficient and glass transition temperature. Scanning electron microscopy (SEM) was employed to study the microstructure of the glass-ceramic sample. It is seen from X-ray diffraction studies that at low Al2O3 concentrations (up to 10.5 mol%) both MgSiO3 and fluorophlogopite phases are present and at higher Al2O3 concentrations of 12.3 and 14.7 mol%, fluorophlogopite and magnesium silicate (Mg2SiO4), respectively are found as major crystalline phases. The average thermal expansion co-efficient (aavg) of the glass samples decreases systematically from 9.8 to 5.510-6C-1 and the glass transition temperature (T g) increases from 610.1 to 675C with increase in alumina content. However, in glass-ceramic samples the aavg varies in somewhat complex manner from 6.8 to 7.910-6C-1 with variation of Al2O3 content. This was thought to be due to the presence of different crystalline phases, their relative concentration and microstructure.
Abstract
The addition of suitable cross-linking agents with norbornene-based monomers has significant effects on the thermal properties of the resulting polymers formed by olefin metathesis. Ethylidene norbornene (ENB) and endo-dicyclopentadiene (endo-DCPD) were mixed separately with various loadings of three different cross-linking agents and then polymerized with the addition of Grubbs’ catalyst. The polymerization kinetics and resulting glass transition temperature (T g) of the systems were evaluated by differential scanning calorimetry (DSC). The addition of the first cross-linking agent, norbornadiene (CL-1), to both endo-DCPD and ENB resulted in decreasing glass transition temperatures with increasing concentrations. In contrast, the addition of the other two cross-linking agents (CL-2 and CL-3), which were both custom synthesized bifunctional norbornyl systems, to both endo-DCPD and ENB resulted in a monotonic increases in T g with cross-linker concentration. By tailoring the loading of these custom cross-linking agents, the properties of these polymer systems can be controlled for various applications, including self-healing composites.
Abstract
The effect of silica nanofiller on the glass transition of a polyurethane was studied by DSC. The pristine polymer exhibits a single glass transition at about –10C. Uniform SiO2 spheres with different average sizes and narrow size distributions were synthesized in solution by the Stber method [1]. Both the effects of silica content within the polymer and particle size were investigated, as well as two different surface treatments. Scanning electron microscopy (SEM) clearly confirms the presence of the particles within the polymer matrix, showing uniform distribution and no agglomeration. While shifting of the glass transition has been reported by many authors, we have not seen any noticeable shift in this polymer. Surprisingly, we found no relevant effects when either increasing the filler content or changing the particle size. Different amounts of particles with average diameters of 175, 395 and 730 nm did not affect the glass transition temperature of the pristine polymer.
Abstract
A number of samples of sodium phosphate glasses doped with Cd/Co or Ag chlorides were prepared and characterized by X-ray diffraction, IR spectral, ion transport and DSC studies. It was found from DSC studies that the glass transition temperature (T g) and crystallization temperature (T c) values increased with the increasing concentrations of the dopants Cd or Co chlorides. However, the T g and T c values were found to decrease when the AgCl was taken as the dopant and the following sequence is observed: T g(CoCl2)>T g(CdCl2)>T g(AgCl); T c(CoCl2)>T c(CdCl2)>T c(AgCl) These results have been discussed and explained on the basis of changes in the structure of sodium phosphate glassy matrix by the addition of different cations as dopants.
Natural and artificial ageing of an alkyd based wood finish
Calorimetric investigations
Abstract
Wood protection in exterior use is generally achieved with a stain. This protective product is often obtained from an alkyd resin. A natural and artificial agening have been studied by measuring the glass transition temperature (T g) of the finish variations in terms of time. In both ageings, theT g variations are the same; there is an increase inT g during the first steps of ageing and then a stabilization. A behaviour equation is proposed and is perfectly suitable to both ageings. Time constants are calculated. This equation shows that the artificial ageing machine chosen is a good means of artificial ageing. It allows the reproduction and the acceleration by 10 times of phenomena which are observed during the natural ageing.