Search Results

You are looking at 21 - 30 of 109 items for :

  • "glutenin subunits" x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All

Aegilops sharonensis (Sharon goatgrass) is a valuable source of novel high molecular weight glutenin subunits, resistance to wheat rust, powdery mildew, and insect pests. In this study, we successfully hybridized Ae. sharonensis as the pollen parent to common wheat and obtained backcross derivatives. F1 intergeneric hybrids were verified using morphological observation and cytological and molecular analyses. The phenotypes of the hybrid plants were intermediate between Ae. sharonensis and common wheat. Observations of mitosis in root tip cells and meiosis in pollen mother cells revealed that the F1 hybrids possessed 28 chromosomes. Chromosome pairing at metaphase I of the pollen mother cells in the F1 hybrid plants was low, and the meiotic configuration was 25.94 I + 1.03 II (rod). Two pairs of primers were screened out from 150 simple sequence repeat markers, and primer WMC634 was used to identified the presence of the genome of Ae. sharonensis. Sequencing results showed that the F1 hybrids contained the Ssh genome of Ae. sharonensis. The sodium dodecyl sulfate polyacrylamide gel electrophoresis profile showed that the alien high molecular weight glutenin subunits of Ae. sharonensis were transferred into the F1 and backcross derivatives. The new wheat-Ae. sharonensis derivatives that we have produced will be valuable for increasing resistance to various diseases of wheat and for improving the quality of bread wheat.

Restricted access

., Thompson, R.D. 1989. Genetic variation in wheat HMW glutenin subunits and the molecular basis of bread-making quality. Bio/Tech 7 :1281–1285. Thompson R.D. Genetic variation in wheat

Restricted access

Wheat endosperm storage proteins are the major components of gluten. They play an important role in dough properties and in bread making quality in various wheat varieties. In the present study, the different alleles encoded at the 5 glutenin loci were identified from a set of 38 tetraploid wheat germplasm obtained from interspecific crosses between durum wheats (Triticum turgidum L. ssp. durum (Desf.) Husn.) and their relatives (T. dicoccum Schübl. and T. polonicum L.) using SDS-PAGE. At Glu-A1 and Glu-B1, encoding high molecular weight glutenin subunits (HMW-GS), 2 and 4 alleles were observed, respectively. Low molecular weight glutenin subunits (LMW-GS) displayed similar polymorphism, as 3, 5 and 3 alleles were identified at loci Glu-A3, Glu-B3 and Glu-B2, respectively. One new allele was detected at Glu-B3 locus and appeared in nine accessions obtained from five crosses. This allele codes for five subunits (2 + 8 + 9 + 13 + 18), encoded by the Glu-B3b without subunit 16 plus subunits 2 and 18. A total of 38 patterns resulted from the genetic combination of the alleles encoding at the five glutenin loci. This led to a significantly higher Nei coefficient of genetic variation in Glu-1, Glu-3 and Glu-B2 loci (0.54). The germplasm analyzed exhibited allelic variation in HMW and LMW glutenin subunit composition and the variation differed from that of tetraploid wheats of other countries. The presence of high quality alleles in glutenin loci have led the accessions to be considered as an asset in breeding programs aimed for wheat quality.

Restricted access

Two hundred and ninety F9 recombinant inbred lines (RILs) derived from the bread wheat cultivar Gaocheng 8901 and the waxy wheat cultivar Nuomai 1 were used in determining the high-molecular-weight glutenin subunit (HMW-GS) and waxy protein subunit combinations and their effects on the dough quality and texture profile analysis (TPA) of cooked Chinese noodles. Seven alleles were detected at Glu-1 loci. There were two alleles found at each of the Wx-A1, Wx-B1 and Wx-D1 loci. Eight allelic combinations were observed for HMW-GS, LMW-GS and waxy proteins, respectively. Both the 1/7+8/5+10 and 1/7+8/5+12 combinations contributed to dough elasticity, and the 1/7+8/5+10 combination also provided better TPA characteristics. Compared to Wx protein, HMW-GS was more important on dough alveogram properties. LMW-GS significantly affected springiness and cohesiveness; HMW-GS mainly affected the hardness; Wx×LMW-GS significantly affected the springiness, cohesiveness and chewiness; HMW-GS×Wx×LMW-GS mainly influenced the springiness and chewiness. But HMW-GS×LMW-GS only affected the spinginess. These indicated the TPA of noodles was significantly affected by the interactions between glutenin and Wx proteins.

Restricted access
Cereal Research Communications
Authors: W.F. Song, Z.Y. Ren, Y.B. Zhang, H.B. Zhao, X.B. Lv, J.L. Li, C.H. Guo, Q.J. Song, C.L. Zhang, W.L. Xin, and Z.M. Xiao

Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m.

Restricted access
Cereal Research Communications
Authors: V. Oslovičová, J.R. Simmonds, J.W. Snape, Z. Gálová, Z. Balážová, and I. Matušíková

226 233 Jin, H., Yan, J., Pena, R.J., Xia, X.C., Morgounov, A., Han, L.M., Zhang, Y., He, Z.H. 2011. Molecular detection of high- and low-molecular-weight glutenin subunit genes

Restricted access

Payne, P. I., Nightingale, M. A., Krattinger, A. F., Holt, L. M. (1987): The relationship between HMW glutenin subunit composition and breadmaking quality of British-grown wheat varieties. J. Sci. Food Agric

Restricted access

. Relationship of HMW, LMW glutenin subunits and gliadins with gluten strength in Indian durum wheats. J. Plant Biochem. Biotech. 13 :51–55. Bhosale S.B. Relationship of HMW, LMW glutenin

Restricted access

Bahraei, S., Saidi, A., Alizadeh, D. 2004. High molecular weight glutenin subunits of current bread wheats grown in Iran. Euphytica 137 :173–179. Alizadeh D

Restricted access

restriction fragment variation in the gene family encoding high-molecular-weight (HMW) glutenin subunits of wheat. Biochem. Genetics , 24, 579–596. Thompson R. D. DNA restriction fragment

Restricted access