Search Results

You are looking at 21 - 30 of 40 items for :

  • Refine by Access: All Content x
Clear All

In wheat, Fusarium fungus promotes the appearance of destructive disease named as Fusarium head blight (FHB) that can cause grain yield reduction and mycotoxin accumulation. The focus of this research was to verify the influence of Fusarium graminearum and F. culmorum on wheat genotypes with different susceptibility to FHB: “Super Žitarka” (susceptible), “Lucija” (moderately resistant) and “Apache” (resistant). The experiment was performed under field conditions by artificial spore inoculation of ears at the flowering stage. The effectiveness of antioxidative enzymes, hydrogen peroxide (H2O2) content and malondialdehyde (MDA) content were observed at several sampling points after Fusarium inoculation (3, 15 and 24 hours). “Lucija” responded to pathogen by increase of guaiacol peroxidase (POD) activity, high H2O2 and MDA content in the early post-inoculation times (3 and 15 hours), compared to control. “Super Žitarka” displayed inhibition of catalase (CAT) activity throughout the whole time course of the experiment. Infected plants of “Apache” showed notable decline in MDA content over time. Moreover, in “Apache” increased H2O2 accumulation was observed immediately after Fusarium exposure (3 and 15 hours), compared to 24 hours. Rapid overproduction of H2O2 under Fusarium stress marked “Apache” as FHB-resistant.

Restricted access

Bio-oil is produced by biomass pyrolysis. It contains hundreds of chemical compounds including alkanes, aromatic hydrocarbons, esters, ethers, ketones, aldehydes, acids, alcohols, and phenols. Phenols are compounds of increasing interest; they can be used as feedstock in many industrial applications such as the production of fuel additives, chemical synthesis, or as food antioxidants. Therefore, the valorization of phenols stemming from bio-oil can be an appropriated alternative to reduce the dependence on petro-based phenols in the chemical industry. The most important phenols in biooil from agricultural wastes are phenol, guaiacol, cresols, syringol, and xylenol. These compounds were separated by silica gel column chromatography technique, using 3 different solvents: a dichloromethane—acetone mixture, ethyl acetate, and methanol. Column elution was followed by thin-layer chromatography (TLC). Phenolic fraction was obtained and not individual phenols. This fraction was analyzed using gas chromatography–flame ionization detector (GC—FID) and gas chromatography—gas chromatography—mass spectrometry (GC—MS) with a DB-1701 column, and it was quantified using the relative response factor. Dichloromethane—acetone mixture was the best eluent to obtain this phenolic fraction, specifically during the first three elution steps.

Restricted access

The effect of different chromium [Cr(VI)] concentrations (0, 75, 150 and 225 μM) on dehydrogenase activity, total soluble protein, proline, malondialdehyde (MDA) and antioxidant enzymes was investigated in the roots of two barley cultivars (Cr-tolerant Zeynelağa and Cr-sensitive Orza-96) in hydroponic experiments. The root dehydrogenase activity and protein content decreased with an increase in the Cr(VI) concentration, but no significant difference was found between the two barley cultivars. Cr(VI) stress increased the contents of proline and MDA in both cultivars, but this effect was more pronounced in Orza-96 than in Zeynelağa. The activities of antioxidant enzymes, including superoxide dismutase (SOD), ascorbate peroxidase (APX) and guaiacol peroxidase (POD), exhibited changes. The SOD activity increased in Zeynelağa and decreased in Orza-96 at 225 μM Cr(VI) compared to their controls. Cr(VI) stress decreased the APX and POD activities. Zeynelağa had greater APX activity than Orza-96 at 150 and 225 μM Cr(VI). However, there was no marked difference in POD activities between the two cultivars. The decrease in root dehydrogenase activity and protein content, the increase in proline and lipid peroxidation, and the alterations in the activities of antioxidant enzymes may be indicative of oxidative stress induced by Cr(VI).

Restricted access

The impacts of climate modification were examined in terms of changes in the stress tolerance of winter wheat varieties. The enzyme reactions of two winter wheat varieties to drought stress, simulated by water withholding in three different phenophases, were analysed in a phytotron experiment in the Centre for Agricultural Research, Hungarian Academy of Sciences. Plants were raised either at ambient CO2 level or at twice this concentration. The quantities of glutathione reductase (GR), glutathione-S-transferase (GST), catalase (CAT), guaiacol peroxidase (POD) and ascorbate peroxidase (APX) were determined from leaf samples collected at the end of the drought treatment.The results showed that antioxidant enzymes may help to counterbalance the reactive oxygen species induced by stress during various stages of the vegetation period. Although there were substantial differences in the changes induced in the activity of individual enzymes by modifications in environmental factors, this activity and its response to stress depended not only on these factors, but also on the developmental stage of the plant. Modifications in enzyme activity could indicate that enhanced CO2 concentration delayed the development of drought stress up to first node appearance, and stimulated antioxidant enzyme activity when drought occurred during ripening.

Restricted access

In order to determine the toxic effect of chromium Cr(VI) on the seed germination, the root and shoot length, the root-cotyledonary leaves, the fresh and dry weight in eight-day-old seedlings Brassica oleracea L. var. acephala DC (kale) were treated with various concentrations of Cr in the growth medium. The accumulation of chromium in the tissues was determined in the cotyledons and the roots of the kale seedlings. High rate of Cr uptake was observed in the roots. But the organs could not accumulate large amount Cr. The effect of Cr on B. oleracea var. acephala was evaluated by changes in chlorophyll a, b, lipid peroxidation, proline, ascorbate, protein carbonyl groups, non-protein thiols and peroxidase activity. There were significant decreases in chlorophylls a, b content of the plants treated with Cr. Chromium treated kale seedlings had higher lipid peroxidation and the protein carbonyl groups in cotyledonary leaves than the roots. The changes refer to toxic effects of Cr. There were increases in the non-protein thiol, the total ascorbate, and proline content in the cotyledons and the roots of the seedlings grown on the media containing 0.1 and 0.15 mM Cr. The guaiacol peroxidase activity was higher in the roots of the seedlings than their cotyledons.

Restricted access

The effect of copper excess (CuSO 4 ) on lipid peroxidation, H 2 O 2 content, and antioxidative enzyme activities was studied in primary leaves of bean seedlings. Fourteen-day-old bean seedlings were cultured in a nutrient solution containing Cu 2+ at various concentrations (50 and 75 μM) for 3 days. Excess of copper significantly increased malondialdehyde content and endogenous H 2 O 2 . This radical accumulated in the intercellular spaces of palisade mesophyll cells. In addition, cupric stress induced changes in antioxidant enzyme activities. GPX (guaiacol peroxidase, EC 1.11.1.7) activity was decreased in 50 μM Cu-stressed leaves whereas 75 μM of CuSOP 4 resulted in an increase of enzyme activity. On the contrary, CAT (catalase, EC 1.11.1.6) activity was stimulated at 50 μM CuSO 4 but unaltered at 75 μM CuSO 4 . Transmission electron microscopy revealed that excess copper induced changes in the ultrastructure of chloroplasts visible in form of a deterioration in the grana structure and the accumulation and swelling of starch grains in the stroma.

Restricted access

The effect of extensive urban dust pollution, caused mainly by road traffic, on some biochemical and structural characteristics of current-year Norway spruce (Picea abies L. Karst.) needles was investigated. Two categories of needle samples were formed according to the data about the pollution levels obtained from the Croatian National Institute of Public Health: less and more affected. Apoplastic guaiacol peroxidases were used as the molecular stress markers. Peroxidase activity was doubled in more affected needles compared with the less affected ones. Also, the electrophoretic pattern of samples extracted from more affected needles revealed the expression of additional isozyme band, which could be attributed to the activation of detoxifying mechanisms. Anatomy of more affected needles was changed as well. Necrosis of needle mesophyll usually connected with the stomata was the most outstanding character. Also, distortions of sieve cells were present in the same needle samples indicating possible disturbances in mineral nutrition. The obtained results showed that needles of Norway spruce trees that are exposed to the higher pollution level undergoes to both structural and biochemical changes. Besides of the described changes, the investigated spruce trees are able to survive in more polluted environment as well.

Restricted access

The correspondence among apoplastic and symplastic antioxidant status, stomatal conductance and water potential was investigated during leaf rolling in Ctenanthe setosa (Rosc.) Eichler (Marantaceae) under drought stress. Apoplastic and symplastic extractions of leaf and petiole were performed at different visual leaf rolling scores from 1 to 4 (1 is unrolled, 4 is tightly rolled and the others are intermediate form). In the leaf symplast, the highest changes were found in catalase (CAT) and guaiacol peroxidase (GPX) activities when compared to score 1 during leaf rolling. No significant change was observed in superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities in the symplast of leaf during the rolling. The same phenomenon was also present in the symplast of petiole except APX activity. In the leaf apoplast, the highest increase occurred in APX and GPX activities, whilst a slight increase in CAT and SOD activities. In the apoplast of petiole, the highest increment was found only in GPX activity, while there were small increases in SOD, APX and CAT activities. Hydrogen peroxide content increased up to score 3 in the apoplast and symplast of leaf and petiole but then slightly decreased. Also, superoxide production increased in the leaf and petiole apoplast but its quantity in the apoplast was much more than that of the symplast. On the other hand, NAD(P)H oxidase activity increased in the leaf but no change was observed in the petiole. In conclusion, as a result of water deficit during leaf rolling antioxidant enzymes are induced to scavenging of ROS produced in symplast and apoplast.

Restricted access

In the course of the Maize Consortium Project, investigations were made on the defence mechanisms employed by maize against various abiotic stress factors (low temperature, cadmium) and on the effects exerted by two compounds (S-methylmethionine, salicylic acid) capable of improving the stress resistance of plants to certain abiotic stresses. Salicylic acid (SA) was found to inhibit the uptake of cadmium (Cd), but caused damage to the roots, including a reduction in the activity of phytochelatin synthase (PCS), which meant that preliminary treatment with SA aggravated the damaging effect of Cd. It was also proved that as the result of 2-day treatment with Cd, there was a continuous rise in the Cd level in the plants, more Cd being accumulated in young leaves than in older ones. The PCS activity increased greatly after 24 hours, both in the leaves and in the roots, declining again after 2 days. The effect of SA was examined in both the hybrids and their parental lines, and the effect of this compound on the intensity of alternative respiration was also investigated. A comparison of chilling tolerance data and antioxidant enzyme activity indicated that these two parameters were not directly correlated to each other, i.e. antioxidant enzyme activity values could not be used to draw reliable conclusions on the chilling tolerance of maize lines and hybrids. With regard to the interaction between alternative respiration and salicylic acid, it was proved that exogenous hydrogen peroxide caused a similar increase in the ratio of alternative respiration to that observed after salicylic acid treatment. Abbreviations: SA, salicylic acid; Cd, cadmium; PCS, phytochelatin synthase; SMM, S-methylmethionine; PCs, phytochelatins; PAR, photosynthetically active radiation; TTC, triphenyl tetrazolium chloride; KCN, potassium cyanide; PSII, 2nd photochemical system; POD, guaiacol peroxidase; APX, ascorbate peroxidase; GR, glutathione reductase

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
F. J. González-Vila
,
F. Martin
,
C. Sáiz-Jiménez
, and
H. H. Nimz

Thermofractography (TF) has been applied to humic and fulvic acids from four different soil types. Among the thermal products, 3,5-dihydroxybenzoic acid, catechol, 5-hydroxymethylfurfural, vanillin, phenol, furfural, guaiacol and indole were identified. These are typical fragments from lignins, microbial polyphenols, polysaccharides and proteins.

Restricted access