Search Results
Abstract
The extent of hydration of agar has been calculated from the self-diffusion studies of Br– and I– ions in agar gel medium. The measured obstruction effect caused by these macromolecules is related to the extent of hydration by Wang's equation. The value of hydration expressed in terms of grams of bound water per gram of anhydrous agar, in presence of NaI and NH4Br /0.1M/ electrolytes comes out to be about 5.2.
Abstract
The use of by-product gypsum is an important alternative in concrete design. In present experiment, conduction calorimetry was applied to investigate the early hydration of calcium aluminate cement (CAC)/flue gas desulfurization (FGD) gypsum paste, supplemented with the determination of setting times and analysis of hydrates by X-ray diffraction (XRD). It was found that different profiles of heat evolution rate were presented depending on the CAC/FGD gypsum ratio. Two distinct exothermic peaks, associating with CAC hydration and ettringite formation respectively, appeared when the FGD gypsum content was less than 20%. Hydrate barrier mechanism was introduced to explain the difference in induction periods of the pastes with or without FGD gypsum. It is concluded that the blending of FGD gypsum accelerates the hydration of CAC for the quick formation of ettringite and generates greater hydration heat from per gram of pure CAC for the high exothermic effect of ettringite formation. The dissolution and diffusion of gypsum plays an important role of reacting controller during the hydrations of the pastes with FGD gypsum. The modified hydration process and mechanism in this case is well visualized by means of calorimetry.
Abstract
The isothermal heat of hydration of MgSO4 hydrates was studied by humidity controlled calorimetry. Two hydrates, starkeyite (MgSO4·4H2O) and a mixture of MgSO4 hydrates with summary 1.3 mol H2O were investigated. The solid-gas reactions were initiated at 30°C and 85% relative humidity. The heat of hydration was determined in a circulation cell in the calorimeter C80 (Setaram). The crystal phases formed after the hydration process were analyzed by thermogravimetry (TG) and X-ray powder diffraction (XRD). Starkeyite reacted with the water vapour to the thermodynamic stable epsomite and the MgSO4 hydrate mixture with 1.3 mol water to hexahydrite. The hydration heats of starkeyite and the mixture were determined to be −169±3 and −257±5 kJmol−1, respectively.
Abstract
The hydration of two calcium hydroxide— silica fume mixtures was studied at 25°C, these are Mix I and Mix II with molar lime/silica ratios of 1 and 1.7, respectively. The free lime, free silica and chemically combined water contents were determined at various time of hydration from which the molar CaO/SiO2 ratios of the formed calcium silicate hydrate, C−S−H, were calculated. The results indicated that hydration takes place in six steps where C−S−H (I) is formed at early stages of hydration, for Mix I, While for Mix II formation of C−S−H (I) and C−S−H (II) were detected by X-ray diffraction analysis and differential thermal analysis.
Abstract
Hydrated methanesulfonates Ln(CH3SO3)3 nH2O (Ln=La, Ce, Pr, Nd and Yb) and Zn(CH3SO3)2 nH2O were synthesized. The effect of atmosphere on thermal decomposition products of these methanesulfonates was investigated. Thermal decomposition products in air atmosphere of these compounds were characterized by infrared spectrometry, the content of metallic ion in thermal decomposition products were determined by complexometric titration. The results show that the thermal decomposition atmosphere has evident effect on decomposition products of hydrated La(III), Pr(III) and Nd(III) methanesulfonates, and no effect on that of hydrated Ce(III), Yb(III) and Zn(II) methanesulfonates.
Abstract
Characterization of the solid-state form (hydrate or polymorph) of a pharmaceutical active is a key scientific and regulatory requirement during development of and prior to seeking approval for marketing of the drug product. A variety of analytical methods are available to perform this task. By nature of the fundamental information it provides, TG-DTA offers advantages over other methods in regards to monitoring and quantitation of hydration state changes. In a single experiment with only a few milligrams of sample, TG-DTA perceives minor changes in phase, quantitates total water content and percent conversion, and illustrates hydrate type. All of this is accomplished without the necessity of generating time-consuming standard curves representing the differing ratios of hydrated to anhydrous forms. This study describes the use of TG-DTA to monitor and quantitate humidity induced solid–solid phase conversion of nitrofurantoin and risedronate. Percent conversion was qualitatively observed by both TG and DTA signals and quantitated by the TG.
Abstract
Calorimetry was applied to follow the hydration of special cement mixtures exhibiting expansion or shrinkage compensation. The standard, common cements show generally less or more visible shrinkage on setting and hardening but mixed with and expansive agent, usually of aluminate and sulfate nature, they can exhibit the increase of volume. The calcium aluminate cement CAC 40 was ground together with special sulfate–lime sinter to produce an expansive additive to Portland cement (CEM I 42.5R). The expansive additive in the environment of hydrating cement transforms into ettringite at “right time” to give expansion before the final setting and hardening takes place. In the experiments the proportions of components of expansive mixture and basic cement were variable. The rate of hydration versus time for common cements is commonly known and reflects the moderate setting and early hardening during the first days after mixing with water (two peaks and the induction period between them). The aim of measurements presented in this study was to show the course of heat evolution curve and the heat evolved values, equivalent to the acceleration/retardation of hydration, in case of the paste with the expansive mixture, as well as the pastes produced from Portland cement and the components of expansive additives added in variable proportions. It was possible to see how the calorimetric curve and consequently the hydration process itself declines from the controlled setting/hardening. These measurements were supplied by the examples of phase composition studies by XRD.
Abstract
Manufacturing processes may involve the presence of water in the crystallization of the drug substance or in manufacturing or in the composition of the drug product through excipients. Dehydration steps may occur in drying, milling, mixing and tabletting processes. Furthermore, drug substances and drug products are submitted to different temperatures and relative humidities, due to various climatic conditions giving rise to unexpected hydration or dehydration aging phenomena. Therefore the manufacture and the characterization of hydrates is part of the study of the physical properties of drug substances. Several hydrates and even polymorphic forms thereof can be encountered. Upon dehydration crystal hydrates may retain more or less their original crystal structure, they can lose crystallinity and give anamorphous phase, they can transform to crystalline less hydrated forms or to crystalline anhydrous forms. The proper understanding of the complex polyphasic systemhydrates–polymorphs–amorphous state needs several analytical methods. The use of techniques such as DSC-TG, TG-MS, sorption-desorption isotherms, sub-ambient experiments, X-ray diffraction combined with temperature or moisture changes as well as crystal structure and crystal modelling in addition to solubilities and dissolution experiments make interpretation and quantitation easier as demonstrated with some typical examples.
Abstract
To use flue gas desulfurization (FGD) gypsum and limestone as supplement of cement, conduction calorimetry was applied to investigate the early hydration of ternary binder of calcium aluminate cement (CAC), Portland-limestone cement (PLC), and FGD gypsum, supplemented with the determination of setting times and X-ray diffraction (XRD) analysis. Different exothermal profiles were presented in two groups of pastes, in which one group (group A) sets the mass ratio of FGD gypsum/CAC at 0.25 and the other group (group B) sets the mass ratio of PLC/CAC at 0.25. Besides the two common exothermal peaks in cement hydration, a third exothermal peak appears in the pastes with 5–15% FGD gypsum after gypsum is depleted. It is found that not PLC but FGD gypsum plays the key role in such ternary binder where the reaction of ettringite formation dominates the hydration process. PLC accelerates the hydration of ternary binder, which mainly attributes to the nucleating effect of fine limestone particles and PC clinker. The modified hydration process and mechanism in this case is well visualized by the means of calorimetry and it helps us to optimize such design of ternary cementitious material.
Abstract
The effect of calcium hydroxide (CH) on the properties of Portland–fly ash cement pastes, at up to high-volume fly ash mixes has been investigated using normal consistency, setting time, compressive strength, thermal analysis and scanning electron microscope. CH as an additive material (5 and 10 wt%), lignite fly ash (FA) up to 50 wt% was used to produce Portland cement (PC)–FA–CH pastes at w/PC + FA ratio of 0.5. Water requirement for normal consistency was found to increase with increasing CH content while a decrease in initial setting time was found. Furthermore, the compressive strengths of all FA mixes with CH were found to be higher than the mixes without CH. Thermal analysis and scanning electron microscope were used to study the hydration of PC–FA–CH system. The results showed that the first phase transition detected by thermal analyses was attributed to ettringite, calcium silicate hydrate, gehlenite hydrate and was found to be higher in PC–FA–CH mixes than in pure Portland–FA cement paste resulting in an increase in compressive strength. Moreover, the hydration phases were also found to increase with increasing curing time. Overall, the results show that the additional of 5 wt% CH in Portland–FA mixes especially at high-volume FA mixes was found to accelerate FA pozzolanic reaction at early ages (7 and 28 days), resulting to an increase in compressive strength.