Search Results

You are looking at 31 - 40 of 214 items for :

  • "vapour pressure" x
  • Refine by Access: All Content x
Clear All

Abstract  

The authors have measured the vapour pressure of the binary systems, piperidine+n -butylamine, piperidine+dipropylamine, piperidine+N-methyl piperidine, piperidine+N,N-dimethyl amino butane and N-methyl piperidine+n -butylamine. The measurements were carried out using an isoteniscope built by Jose [1]. The vapour pressure, excess Gibbs free energies at 298,15, 303,15, 313,15, 323,15, 333,15, and 325,15 K, are reported for these mixtures. The excess Gibbs free energies have been fitted to Redlich-Kister equation.

Restricted access

The authors have measured the vapour pressure of the four binary systems, piperidine +tert-butyl methyl ether, piperidine +1,4 dioxane, piperidine + tetrahydropyrane and N-methyl piperidine +tert-butyl methyl ether. The measurements were carried out using an isoteniscope built by J. Jose [1], The vapour pressure, excess Gibbs free energies at 298.15, 303.15, 313.15, 323.15, 333.15 and 343.15 K, are reported for these mixtures. The excess Gibbs free energies have been fitted to the Redlich-Kister equation.

Restricted access

Abstract  

Monomethylhydrazine (MMH) (CH3)NHNH2 is currently used as fuel for spacecraft engine combustion chambers. The Aestus engine of the upper stage of Ariane 5 is fed with MMH under pressure of 16 bars. The propellant, initially at room temperature, is about 393 K when introduced into the combustion chamber, due to heating up through the regenerative circuit. As MMH is unstable above 373 K, it has been necessary to check its decomposition rate and vapor pressure under such conditions. The vapor pressure of this propellant has been measured in a pressure vessel and the thermal decomposition rate was determined with the same device up to 500 K.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: A. Bessonov, N. Morozova, P. Semyannikov, S. Trubin, N. Gelfond, and I. Igumenov

Abstract  

The thermal properties of dimethylgold(III) carboxylates of general formula [(CH3)2Au(OOCR)]2 (R=methyl (1), tert-buthyl (2), trifluoromethyl (3), or phenyl (4)) in solid state have been investigated by the thermogravimetric analysis. The temperature dependences of saturated vapour pressure of complexes have been studied by the Knudsen effusion method with mass spectrometric indication. The thermodynamic parameters Δsub H T 0 and Δsub S T 0 of the sublimation processes have been calculated. Thermal decomposition of the vapour of complexes 1 and 2 has been studied by means of high temperature mass spectrometry in vacuum, and by-products of decomposition have been determined.

Restricted access

Abstract  

The authors have measured the vapour pressure of the binary four systems, piperidin +1,4-dioxan, piperidin+tetrahydropyran, piperidin+tert-butyl methyl ether and N-methyl piperidin+tert-butyl methyl ether. The measurements were carried out using an isoteniscope built by J. Jose [1]. The vapour pressure, excess Gibbs free energies at 298.15 K, 303.15 K, 313.15 K, 323.15 K, 333.15 K and 343.15 K, are reported for these mixtures. The excess Gibbs free energies have been fitted to the Redlich-Kister equation.

Restricted access

derived by our research group [ 1 – 7 ] with the main purpose of estimating sublimation vapor pressures of low volatile organic compounds. These estimations can be useful for evaluating vapor pressures when the enthalpy of sublimation is determined using a

Restricted access