Search Results
Abstract
Complex mixtures of long chain organic compounds often show overlapping glass transition temperatures (T gs) when analyzed by differential scanning calorimetry (DSC) or modulated DSC (MDSC). In such cases, subjective and inconsistent smoothing of data acquired under different conditions can lead to the misinterpretation of results. A quantitative method for the selection of smoothing factors for the analysis and comparison of (M)DSC results is presented. The method is most useful for the analysis of the derivative of the heat capacity, dC p/dt or dC p/dT, plots which best highlight overlapping T gs. Four equations are shown to relate the heating rate and the smoothing factor. The equations allow a comparison of data acquired i) at different heating rates and plotted vs. temperature, ii) at a single heating rate and plotted vs. both time and temperature, i.e., dC p/dt vs. dC p/dT, iii) at different heating rates and plotted vs. both time and temperature, and iv) at different heating rates, and shown exclusively in the time domain. Examples of the use of the equations are provided for the analysis of bitumen, a complex mixture of natural origin.
Abstract
Polyaniline/γ-Al2O3 (PANI/γ-Al2O3) composites were synthesized by in-situ polymerization at the presence of HCl as dopant by adding γ-Al2O3 nanoparticles into aniline solution. The composites were characterized by FTIR and XRD. The thermogravimetry (TG) and modulated differential scanning calorimetry (MDSC) were used to study the thermal stability and glass transition temperature (T g) of the composites, respectively. The results of FTIR showed that γ-Al2O3 nanoparticles connected with the PANI chains and affected the absorption characteristics of the composite through the interaction between PANI and nano-sized γ-Al2O3. And the results of XRD indicated that the peaks intensity of the PANI/γ-Al2O3 composite were weaker than that of the pure PANI. From TG and derivative thermogravimetry (DTG) curves, it was found that the pure PANI and the PANI/γ-Al2O3 composites were all one step degradation. And the PANI/γ-Al2O3 composites were more thermal stable than the pure PANI. The MDSC curves showed that the nano-sized γ-Al2O3 heightened the glass transition temperature (T g) of PANI.
Abstract
The toughness of amorphous copolyester sheets was assessed by the essential work of fracture (EWF) concept. While the yielding-related work of fracture terms did not change significantly, the necking-related parameters strongly decreased with decreasing entanglement density of the copolyesters having different amounts of cyclohexylenedimethylene (CHDM) units in their backbones. Furthermore, copolyesters with high CHDM content and thus less entanglement density showed full recovery of the necked region beyond the glass transition temperature, i.e. the ‘plastic’ zone in the related specimens formed by cold drawing and not by true plastic deformation. By contrast, the copolyester with negligible amount of CHDM did not show this shape recovery. Modulated differential scanning calorimetry (MDSC) revealed that the necking in the latter system was accompanied by strain-induced crystallization. The superior work hardening in the necking stage of the respective poly(ethylene terephthalate) (PET) specimens can thus be ascribed to stretching of the entanglement network with superimposed crystallization.
Abstract
Different grades of linear low density polyethylenes (LLDPEs) have been quenched cooled step-wise and crystallised isothermally at (a series of increasing) temperatures in a DSC (thermal fractionated samples). These samples have been investigated by temperature modulated DSC (MDSC). The heat flow curves of the thermal fractionated materials were compared with those obtained from samples crystallised at a relatively slow cooling rate of 2 K min-1(standard samples). The melting enthalpy obtained from the total heat flow of the thermal fractionated samples was 0-10 J g-1higher than those of standard samples. The melting enthalpy obtained from the reversing heat flows was 13-31 J g-1lower in the thermal fractionated samples than in the standard samples. The ratio of the reversing melting enthalpy to the total melting enthalpy increased with decreasing density of the PE. The melting temperature of the endotherms formed by the step-wise cooling was 9 K higher than the crystallisation temperature.
Abstract
The tensile loading-induced necking in notched specimens of an amorphous copolyester (aCOP) was studied by modulated differential scanning calorimetry (MDSC). It was shown that necking occurred by cold drawing since the enthalpy of cold crystallization and that of the subsequent melting agreed fairly with each other. Increasing deformation in the necking zone and increasing deformation rate of the specimens shifted the onset of cold crystallization toward lower temperatures and yielded a slightly higher glass transition temperature (Tg). This was attributed to the molecular orientation caused by mechanical loading. The finding that the melting contained a non-reversing part was considered as appearance of possible microcrystallinity. The Tg range was strongly influenced by the deformation rate and reflects the thermomechanical history of the samples accordingly.
Abstract
The mechanical strain-induced βα-transition of a β-phase isotactic polypropylene (β-iPP) was studied by modulated differential scanning calorimetry (MDSC). Samples were taken after tensile fracture of a double notched specimen from its process and plastic zones, respectively, and the related calorimetric response was compared to that of the bulk material. In contrast to conventional DSC results, it was found that the βα-transformation was not completed in the process zone. Furthermore, the melting of the α-iPP showed both non-reversing and reversing characteristics, whereas the melting of the β-phase proved to be a reversing process. Therefore, it was recommended to consider the conversion grade of the βα-transformation by the relative change in the melt flux of the reversing β-melting peak.
Abstract
The DSC characterisation of the morphology of the metastable a phase of stoichiometric nickel sulphide was carried out using two calorimeters; a TA Instruments 2920 MDSC and a Perkin Elmer DSC-7, and two quenching histories. Based on these quenching histories, significant differences were observed in the heat flow curves, including the observation of a second exothermic peak which is tentatively assigned to be a metastable phase to metastable phase transformation. The kinetic constants for the a to b recrystallisation were determined as a function of degree of conversion using a mechanism free isoconversional model. Variations in the values of the kinetic constants were also ascribed to the quenching histories. Although the differences in morphology observed were ascribed to the processing history, the shift in the position of the a to b recrystallisation peak was partially attributed to the thermal resistances of the instruments used.
Abstract
This article discusses AFM-based localized thermal analysis of crosslinked polymer coatings based on a recent breakthrough in nanoscale thermal probe technology. The addition of a thermal tip to a conventional AFM adds a new and valuable capability of spatially resolved thermal analysis to the AFM. It is particularly useful for thin films since it enables the measurement of transition temperatures (melting (T m) or glass (T g)) on selected regions of the sample aiding in the identification and characterization of phases on the length scales approaching macromolecular dimensions. Examples include the monitoring of the softening point of automotive clearcoat systems, as a function of cure time and cure temperature and characterization of degradation and embrittlement of weathered acrylic-polyurethane coatings. Comparison of nano thermal analysis with bulk DSC and MDSC is made and its inherent advantages over DSC in analyzing surfaces, is demonstrated.
Abstract
The polymerization of a cyclic butylene terephthalate (CBT) oligomer was studied as a function of temperature (T=200 and 260C, respectively) by modulated DSC (MDSC). The first heating was followed by cooling after various holding times (5, 15 and 30 min) prior to the second heating which ended always at T=260C. This allowed us to study the crystallization and melting behavior of the resulting polybutylene terephthalate (PBT), as well. In contrary to the usual belief, the CBT polymerization is exothermic and the related process is superimposed to that of the CBT melting. The melting behavior of the PBT was affected by the polymerization mode (performed below or above the melting temperature of the PBT product) of the CBT. Annealing above the melting temperature of PBT yielded a product featuring double melting. This was attributed to the presence of crystallites with different degrees of perfection. The crystals perfection which occurred via recrystallization/remelting was manifested by a pronounced exothermic peak in the non-reversing trace.
Abstract
The DSC curve obtained in conventional equipment usually only shows the resultant thermal effect due to simultaneous phenomena, which may occur during isothermal or dynamic analyses. This does not allow one to identify the processes properly and may cause an erroneous interpretation of the resulting curves. Modulated DSC equipment enhances the operating conditions and the analysis capacity of conventional DSC by superimposing a sinusoidal temperature modulation on the linear temperature control. Thus reversing and non-reversing heat flow curves are obtained, which are, respectively, the heat capacity and kinetic components of the DSC curve. Therefore, events that are related to these components can be separately analyzed. A method to obtain curves similar to the MDSC reversing and non-reversing components was developed using conventional DSC equipment in a non-conventional way. It was applied to analyze samples of poly(ethylene terephthalate) (PET) taken from bottles of mineral water. The second PET crystallization step that occurs during its melting was quantified and an apparent initial crystallinity was obtained from the resulting data.