Search Results

You are looking at 51 - 60 of 199 items for :

  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All

, Method 155: Determination of wet gluten quantity and quality (Gluten Index acc. to Perten) of whole wheat meal and wheat flour (Tr. aestivum). International Association for Cereal Science and Technology , Vienna

Open access
Cereal Research Communications
Authors: E. Martínez-Cruz, E. Espitia-Rangel, H. Villaseñor-Mir, J. Molina-Galán, I. Benítez-Riquelme, A. Santacruz-Varela, and R. Peña-Bautista

and breadmaking quality-related parameters commonly used in wheat breeding. In: Lafiandra, D., Masci, S., D’Ovidio, R. (eds), The Gluten Proteins. RSC Publishing, Cambridge, UK, pp. 156–157. Cervantes F

Restricted access

Wheat flour was enhanced by linseed fibre, characterised by granulation 500–700 μm. Using seeds from 2015 flax harvest, linseed fibre was gained from two golden and one brown linseed varieties (Amon, Raciol and Recital, respectively). Additions at levels 2.5% and 5.0% affected amylases activity and protein technological quality softly, evaluated by Falling Number and Zeleny sedimentation tests, respectively. Both brown and yellow linseed fibre significantly supported extensograph elasticity of non-fermented dough. Baking potential of composites tested evaluated as extensograph energy significantly decreased about 7–18%, likely owing to dilution of dough gluten skeleton. Pasting behaviour of flour composites reflected a hydrophilic character of non-traditional material – amylograph viscosity was elevated from 590 units to ca 700 units by Amon and Recital fibre, and to ca 930 units by Raciol fibre. Pasting profiles of flour composites, recorded by using of Rapid Visco Analyser, confirmed this finding. Dough fermentation was represented by maturograph test, during which the tested samples were differentiated in part according to the dough resistance. Reflecting small modifications in dough visco-elastic properties, specific volumes of bread buns were similar trough whole sample set. A weak worsening of buns vaulting reflected a partial disruption of dough gluten skeleton. Consumer’s quality of all enhanced bread variants was evaluated in category acceptable, determined as crumb penetration (values higher than 20 mm).

Restricted access
Cereal Research Communications
Authors: M. Demichelis, L.S. Vanzetti, J.M. Crescente, M.M. Nisi, L. Pflüger, C.T. Bainotti, M.B. Cuniberti, L.R. Mir, and M. Helguera

Seed storage proteins (gliadins and glutenins) play a key role in the determination of dough and bread-making quality in bread wheat. This is due to the interaction between high and low molecular weight glutenins subunits and gliadins, via complex inter- and intramolecular bondings. In contrast to high molecular weight glutenins, low molecular weight glutenins and gliadins analysis is difficult due to the large number of expressed subunits and coding genes. For these reasons the role of individual proteins/subunits in the determination of wheat quality is less clear. In this work we studied the effect of gene clusters Glu-A3/Gli-A1 and Glu-D3/Gli-D1 in bread-making quality parameters using 20 F4-6 families from the cross Prointa Guazú × Prointa Oasis, both cultivars carrying identical high molecular weight glutenins subunits composition and presence of 1BL/1RS wheat-rye translocation, but differing in Glu-A3/Glu-D3 low molecular weight glutenins subunits and Gli-A1/Gli-D1 gliadins patterns. ANCOVA analysis showed a significant contribution of the Glu-D3/Gli-D1 gene cluster provided by Prointa Guazú to gluten strength explained by mixograph parameters MDS and PW, and Zeleny Test. Markers tagging Prointa Guazú Glu-D3/Gli-D1 alleles are available for strong gluten selection in breeding programs.

Restricted access

Alda, L.M., Lazureanu, A., Alda, S., Baluta, D., Sirbulescu, C., Gogoasa, I. 2010. Wet gluten analysis depending on cultivar, fertilization, herbicide application and climate conditions, in winter wheat. J. of

Restricted access

the 18th EUCARPIA General Congress, 9–12 September 2008, Valencia, Spain, pp. 553–557. Branlard, G., Dardevet, M., Amiour, N., Igrejas, G. 2003. Allelic diversity of HNW and LMW gluten subunits and omega

Restricted access
Cereal Research Communications
Authors: W.F. Song, Z.Y. Ren, Y.B. Zhang, H.B. Zhao, X.B. Lv, J.L. Li, C.H. Guo, Q.J. Song, C.L. Zhang, W.L. Xin, and Z.M. Xiao

Two lines, L-19-613 and L-19-626, were produced from the common wheat cultivar Longmai 19 (L-19) by six consecutive backcrosses using biochemical marker-assisted selection. L-19 (Glu-D1a, Glu-A3c/Gli-A1?; Gli-A1? is a gene coding for unnamed gliadin) and L-19-613 (Glu-D1d, Glu-A3c/Gli-A1?) formed a set of near-isogenic lines (NILs) for HMW-GS, while L-19-613 and L-19-626 (Glu-D1d, Glu-A3e/Gli-A1m) constituted another set of NILs for the LMW-GS/gliadins. The three L-19 NILs were grown in the wheat breeding nursery in 2007 and 2008. The field experiments were designed using the three-column contrast arrangement method with four replicates. The three lines were ranked as follows for measurements of gluten strength, which was determined by the gluten index, Zeleny sedimentation, the stability and breakdown time of the farinogram, the maximum resistance and area of the extensogram, and the P andWvalues of the alveogram: L-19-613 > L-19-626 > L-19. The parameters listed above were significantly different between lines at the 0.05 or 0.01 level. The Glu-D1 and Glu-A3/Gli-A1 loci had additive effects on the gluten index, Zeleny sedimentation, stability, breakdown time, maximum resistance, area, P and W values. Although genetic variation at the Glu-A3/Gli-A1 locus had a great influence on wheat quality, the genetic difference between Glu-D1d and Glu-D1a at the Glu-D1 locus was much larger than that of Glu-A3c/Gli-A1? and Glu-A3e/Gli-A1m at the Glu-A3/Gli-A1 locus. Glu-D1d had negative effects on the extensibility and the L value compared with Glu-D1a. In contrast, Glu-A3c/Gli-A1? had a positive effect on these traits compared with Glu-A3e/Gli-A1m.

Restricted access

.R., Halford N.G., Lafiandra D. 2003. Genetics of wheat gluten proteins genetics of wheat gluten proteins. Advances in Genetics 49 :111–184. Lafiandra D. Genetics of wheat gluten proteins

Restricted access

Effects of hydrocolloids (arabic gum, guar gum, and xanthan gum) on the physicochemical and rheological properties of whole-barley fortified cracker flour were determined using solvent retention capacity, alveograph, and Mixolab profiles. Results showed that the water absorption of whole-barley fortified cracker flour was reduced by the additional arabic gum. Besides, arabic gum was more effective in reducing the resistance to inflation and improving the extensibility of whole-barley fortified dough. Mixolab parameters indicated that the weakening of gluten proteins and the rate of starch retrogradation in whole-barley fortified cracker dough were reduced by the presence of arabic gum. Guar gum and xanthan gum promoted the rate of protein breakdown, but slowed down the starch gelatinization and retrogradation rate during the Mixolab heating-cooling cycle. In conclusion, involved arabic gum rather than guar gum or xanthan gum is benefit to improve the baking quality of wholebarley fortified saltine crackers.

Restricted access
Cereal Research Communications
Authors: Z. L. Li, D. D. Wu, H. Y. Li, G. Chen, W. G. Cao, S. Z. Ning, D. C. Liu, and L. Q. Zhang

Gliadin is a main component of gluten proteins that affect functional properties of bread making and contributes to the viscous nature of doughs. In this study, thirteen novel ω-gliadin genes were identified in several Triticum species, which encode the ARH-, ATDand ATN-type proteins. Two novel types of ω-gliadins: ATD- and ATN- have not yet been reported. The lengths of 13 sequences were ranged from 927 to 1269 bp and the deduced mature proteins were varied from 309 to 414 residues. All 13 genes were pseudogenes because of the presence of internal stop codons. The primary structure of these ω-gliadin genes included a signal peptide, a conserved N-terminal domain, a repetitive domain and a conserved C-terminus. In this paper, we first characterize ω-gliadin genes from T. timopheevi ssp. timopheevi and T. timopheevi ssp. araraticum. The ω-gliadin gene variation and the evolutionary relationship of ω-gliadin family genes were also discussed.

Restricted access