Search Results
The enthalpy of the reduction of UO2F2 with hydrogen was obtained from quantitative DTA measurements with a linear heating rate and under isothermal conditions, and the thermodynamic data on UO2F, formed as a stable intermediate in the reduction of UO2F2 to UO2, are also presented. The advantages of isothermal DTA in the reduction of U3O8 to UO2 could be demonstrated.
Abstract
In this paper, examples are given of how calorimetric values can give greater certainty to phase equilibria calculated from thermodynamic data. Errors that may arise when phase diagram evaluations are carried out largely from the basis of Gibbs energy information only are illustrated by reference to recent evaluations of the Ti−Si system and the resulting calculated oxidation behaviour of titanium silicides. The importance of calorimetric values for calculation of metastable phase equilibria is demonstrated by results of work on the AlN−TiN hard-metal coating system. Finally, suggestions are made with regard to areas of work where calorimetric data are urgently needed.
Abstract
A research program has been in progress to obtain reliable thermodynamic data on various binary and ternary alkali metal compounds in the temperature range of 300 to 1500 K. To date, heat capacity measurements have been made on cesium and rubidium chromates, dichromates, zirconates, molybdates, dimolybdates, and halides in the temperature range of 300 to 800K. In addition, measurements are planned or are currently in progress on cesium and rubidium chalcogenides, aluminates, uranates, silicates, and several other lithium, sodium, and potassium compounds. The status of the research program is discussed.
Abstract
Studies of the stability of various metal EDTA, DTPA and DOTA complexes in order to evaluate their applicability as non-sorbing tracers have been performed. In laboratory tests, the stability generally increases for the individual metal ions in the EDTA<DTPA<DOTA order. For most metal ions, the same trend can be observed for the thermodynamic stability constants. In the in situ experiment, various metal EDTA tracers were used in very low concentrations; YbEDTA−, for example had a breakthrough and recovery which were very similar to the non-sorbing tracers used. According to the extremely low tracers concentrations used, thermodynamic data indicate that all metal EDTA tracers should have been decomplexed as a result of the competition with the naturally occurring cations in the groundwater. This was not found, which indicates that the decomplexation rate and sorption mechanism are important in estimating the applicability of the metal complexes as tracers. The DOTA complexes of elements in the middle of the lanthanide series have indicated high stability in the laboratory tests and therefore appear to be good candidates as non-sorbing tracers. However, in contrary to the metal EDTA, tracers, the DOTA complexes of La3+ and Lu3+ seemed to be slightly delayed in the in situ experiment.
The percentage of thermal dehydration and decomposition of ordinary and deuterated hydrates of barium acetate (tri- and monohydrates) were studied with a derivatograph and by DSC method. The observed phase transitions were identified and their corresponding enthalpy changes determined. The latter were compared with those estimated on thermodynamic data. The conclusions made on the dehydration process in correlation with IR spectra were used as information about the structure of the dehydrated water in the compounds investigated. The end product was also identified as barium carbonate.
In mineralogical research differential thermal analysis can be applied as either a single or a combined method for three purposes:1.for the qualitative identification of minerals and the (semi-)quantitative determination of the components of rocks and soils,2.for the characterization of crystal-physical and crystal-chemical properties, including the study of kinetics and the determination of thermodynamic data, phase and reaction equilibria,3.for special petrogenetic investigations concerning the interrelation of mineralogical properties with the formation, decomposition or recrystallization of minerals.
Abstract
Abstract
Sr2CeO4 has been prepared by sol-combustion and co-precipitate routes and the resulting products have been characterized by XRD analysis. The molar enthalpies of solution of Sr2CeO4, Sr(NO3)2(s) and Ce(NO3)36H2O(s) in 0.150 dm3 of (4.41 mol dm3 H2O2+4.23 mol dm-3 of HNO3) solvent as well as the molar enthalpies of solution of Sr2CeO4(s), SrCl2(s) and CeCl3(s) in 0.150 dm3of (1.47 mol dm-3 H2O2+3.05 mol dm-3 of HClO4) solvent have been measured using an isoperibol type calorimeter. From these results and other auxiliary data, the standard molar enthalpy of formation of Sr2CeO4 has been derived to be -2277.33.1 kJ mol-1 at 298.15 K. This is the first reported thermodynamic data on this compound.
Abstract
Synergistic extraction of uranyl ion with acylpyrazolones such as 1-phenyl-3-methyl-4-trifluoroacetylpyrazolone-5 (HPMTFP, pKa=2.7), 1-phenyl-3-methyl-4-acetylpyrazolone (HPMAP, pKa=3.8) or 1-phenyl-3-methyl-4-benzoylpyrazolone-5 (HPMBP, pKa=4.2) in combination with dicyclohexano-18-crown-6 (DC-18-C6) has been studied at various fixed temperatures. The results indicate that the equilibrium constants of the organic phase addition reaction, log Ks, at 30°C are almost constant, viz., 2.72, 2.69 and 2.84, respectively, for the above three systems. The similarity and low log Ks values with DC-18-C6 as compared with TBP systems with these pyrazolones appears to arise due to the limitation to the approach of the large crown ether molecule in bonding with the uranyl chelate. This is in contrast to the fact that the relative basicities of the two donors (equilibrium constant for nitric acid uptake) are comparable. Thermodynamic data for chelate extraction with HPMTFP evaluated by the temperature coefficient method indicates that a hydrated chelate is extracted into the organic phase. Also, the organic phase addition reaction with DC-18-C6 is stabilized by exothermic enthalpy change, the entropy change counteracting in all the three cases.
In order to fill the evident gap in the thermodynamic data of nickel-palladium-gallium and nickel-palladium-indium ternary alloys, the enthalpies of formation of these systems in the liquid state have been determined. This was achieved by means of a very high temperature calorimeter (T<1800 K), using the direct drop method, and based on analogous measurements of the respective binary alloys previously published. Complete automation of the calorimeter led to a good precision even at the highest temperatures. The enthalpies of formation of the ternary liquid alloys were measured between 1400 and 1600 K on the whole composition range. As in the limiting binary systems, enthalpies of formation are negative and non temperature dependent at any composition.