Search Results

You are looking at 61 - 70 of 1,546 items for :

  • "activation energy" x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All

Meaningful activation energies for complex systems

I. The application of the Ozawa-Flynn-Wall method to multiple reactions

Journal of Thermal Analysis and Calorimetry
Author: D. Dowdy
Restricted access

Abstract  

A detailed analysis is presented of the applicability of several dependences commonly used for the determination of activation energies from non-isothermal measurements. Reactions proceeding according to different kinetic equations are simulated and the validity of the activation energy values obtained is discussed. The general conclusion is drawn that none of the examined dependences should be used to determine the activation energy. For a rough estimation of activation energy, the Kissinger equation can be applied according to Ockham's razor.

Restricted access

Non-isothermal kinetics in solids

The precision of some integral methods for the determination of the activation energy without neglecting the temperature integral at the starting temperature

Journal of Thermal Analysis and Calorimetry
Authors: J. Cai and R. Liu

Abstract  

The integral methods, which are obtained from the various approximations for the temperature integral, have been extensively used in the non-isothermal kinetic analysis. In order to obtain the precision of the integral methods for the determination of the activation energy, several authors have calculated the relative errors of the activation energy obtained from the integral methods. However, in their calculations, the temperature integral at the starting temperature was neglected. In this work, we have performed a systematic analysis of the precision of the activation energy calculated by the integral methods without doing any simplifications. The results have shown that the relative error involved in the activation energy determined from the integral methods depends on two dimensionless quantities: the normalized temperature θ=T/T 0, and the dimensionless activation energy x 0=E/RT 0 (where E is the activation energy, T is the temperature, T 0 is the starting temperature, R is the gas constant).

Restricted access

Abstract  

The response of a chemical reaction to temperature modulation has been examined experimentally in an epoxy thermosetting system. The kinetic response appears in the imaginary part of the complex heat capacity determined by TMDSC. From the imaginary part and the ‘non-reversing’ heat flow of reaction, the activation energy has been determined. The value of the activation energy obtained is in good agreement with the value determined from Kissinger's plot utilizing the peak temperatures of the exothermic reaction with different heating rates.

Restricted access

Abstract

A nonlinear algorithm has been suggested to increase the accuracy of evaluating the activation energy by the integral isoconversional method. A minor modification of the algorithm has made it possible to adapt the isoconversional method for an arbitrary variation of the temperature. This advanced isoconversional method allows for trustworthy estimates of the activation energy when the thermal effect of a reaction makes the temperature of a sample deviate from a prescribed heating program.

Restricted access

Abstract  

Pentaerythritol tetranitrate (PETN) powders are used to initiate other explosives. During long-term storage, changes in powder properties can cause changes in the initiation performance. Changes in the morphology and surface area of aging powders are observed due to sublimation and growth of PETN crystals through coarsening mechanisms, (e.g. Ostwald ripening, sintering, etc.). In order to alleviate the sublimation of PETN crystals under service conditions, stabilization methods such as thermal cycling and doping with certain impurities during or after the crystallization of PETN have been proposed. In this report we present our work on the effect of impurities on the morphology and activation energy of the PETN crystals. The pure and impurity doped crystals of PETN were grown from supersaturated acetone solution by solvent evaporation technique at room temperature. The difference in the morphology of the impurity-doped PETN crystal compared to pure crystal was examined by optical microscopy. The changes in the activation energies and the evaporation rates are determined by thermogravimetry (TG). Our activation energies of evaporation agree with earlier reported enthalpies of vaporization. The morphology and activation energy of PETN crystals doped with Ca, Na, and Fe cations are similar to that for pure PETN crystal, whereas the Zn-ion-doped PETN crystals have different morphology and decreased activation energy.

Restricted access

Summary  

The effect of pH was characterised on the thermal stability of magnesium saturated skeletal and cardiac α-actin isoforms with differential scanning calorimetry (DSC) at pH 7.0 and 8.0. The calorimetric curves were further analysed to calculate the enthalpy and transition entropy changes. The activation energy was also determined to describe the energy consumption of the initiation of the thermal denaturation process. Although the difference in T mvalues is too small to interpret the difference between the a-actin isoforms, the values of the activation energy indicated that the α-skeletal actin is probably more stable compared to the α-cardiac actin. The difference in the activation energies indicated that lowering the pH can produce a more stable protein matrix in both cases of the isoforms. The larger range of the difference in the values of the activation energies suggested that the α-cardiac actin is probably more sensitive to the change of the pH compared to the α -skeletal actin.

Restricted access