Search Results

You are looking at 71 - 80 of 568 items for :

  • "Solubility" x
  • Biology and Life Sciences x
  • Refine by Access: All Content x
Clear All

Lakemond, C., De Jongh, H.J., Hessig, M., Gruppen, H. & Voragen, A. (2000): Soy glycinin: Influence pH and ionic strength on solubility and molecular structure at ambient temperatures. J. agric. Fd Chem., 48 , 1985-1990. Soy

Restricted access

The combined effects of yeast (1 ppm) and salinity on germination, seedling growth, metabolite accumulation and antioxidant defense system of flax (Linum usitatissimum) seeds grown at 100, 200 and 300 mM NaCl were studied. In this investigation, the germination was completely inhibited at 300 mM NaCl. Moreover, salinity induced marked increases in lipid peroxidation product (MDA), soluble carbohydrates as well as the reduced glutathione which were concomitant with sharp decrease in total phenols and ascorbic acid contents in 12-day-old flax seedlings. Furthermore, NaCl treatments increased the activities of some antioxidant enzymes (superoxide dismutase; SOD, peroxidase; POX and polyphenol oxidase; PPO). On the other hand, yeast treatments under salinity stress restored the membrane integrity and improved seedling growth. The results suggested that yeast treatments mitigated salinity stress via accumulation of some osmoprotectants such as free amino acids particularly proline which associated with elevating the defense system in terms of ascorbic acid, glutathione and total phenol contents. Yeast treatments also stimulated the activities of some antioxidant enzymes, preventing membrane peroxidation resulting in high capacity for germination and improved seedling growth under sever salt stress.

Restricted access

Emasculation and bagging of flowers, which are widely used in the controlled pollination of monoclinous plants, may induce premature senescence, flower abscission and low fruit set. To determine the mechanism responsible for these phenomena, levels of abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid (IAA), ethylene, soluble sugars, reducing sugars and free amino acids in black locust (Robinia pseudoacacia) flowers subjected to different treatments were quantified at different developmental stages. The phytohormones and assimilates were also quantified in untreated flowers to investigate the presence of discernible patterns. The levels of ethylene and ABA in emasculated and bagged (EB) flowers increased prematurely compared with those of untreated flowers, whereas the content of reducing sugars in EB flowers decreased compared with that of untreated flowers. These results indicated that the premature increase in ethylene and ABA synthesis, and the decrease in reducing sugars content, in EB flowers may cause flower abscission and result in low fruit set, which may be relevant for assimilate applications and future research on the regulation of controlled pollinations with exogenous phytohormones.

Restricted access

Acetaminophen (AAP), acetylsalicylic acid (ASA) and dipyrone (DIP) are antipyretic and analgesics drugs that have wide use in health sciences. Some drugs can modify the labeling of blood elements with technetium-99m (99mTc). This work has evaluated the effect of AAP, ASA and DIP on the labeling of the blood elements with 99mTc. Blood was incubated with different concentrations of the drugs before the 99mTc-labeled process. Plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated and percentage of radioactivity (%ATI) in each fraction was determined. Data have shown that the antipyretic drugs used in this study did not significantly modify the fixation of 99mTc on the blood elements when the experiments were carried out with the doses usually used in human beings. Although the experiments were carried out with rats, it is possible to suggest that AAP, ASA or DIP should not interfere with the procedures in nuclear medicine involving the labeling of blood elements with 99mTc

Restricted access

AMP-deaminase (EC 3.5.4.6) is an enzyme responsible for stabilising adenylate energy changes. The properties of this enzyme are controlled by various ligands of hydrophobic nature. An investigation of enzyme activity alterations under the influence of natural phenolic acids (tannic, ellagic and gallic) which are soluble in water, could evidence the biological toxicity of these compounds. In our study purified AMP-deaminase isolated from white muscle of Cyprinus carpiowas exposed to phenolic acids in the concentration range of 1 to 50 µM as well as to tannic acid in the presence of Cu2+ions (5 µM). On the basis of the obtained results we can conclude that among the tested acids, gallic acid did not contribute to the change in AMP-deaminase activity, whereas ellagic acid diminished its activity at the highest concentration (50 µM). Tannic acid caused a significant decrease in the enzyme activity in comparison to control for all used concentrations. Cu2+ions alone reduced the activity of AMP-deaminase for all studied concentrations. A combined action of a chosen Cu2+ions concentration (5 µM) with tannic acid at the concentration higher than 2 µM resulted in a decrease in the enzyme activity, but for lower tannic acid concentration of 1 µM the activity of AMP-deaminase was stimulated. These experiments showed that tannic acid may stop free radical chain reactions only at low concentrations (1 µM) in the presence of Cu2+ions (5 µM).

Restricted access

Acetylsalicylic acid is the most widely used drug as antipyretic, analgesic, anti-inflammatory agent and for secondary prevention of thrombotic phenomena in the heart, brain and peripheral circulation. Drugs can modify the labeling of blood constituents with technetium-99m ( 99m Tc). This work has evaluated the effect of in vivo treatment with acetylsalicylic acid on the in vitro labeling of the blood constituents with 99m Tc. Wistar rats were treated with different doses (1.5, 3.0 and 6.0 mg/kg) of acetylsalicylic acid during 1 hour. At higher dose used (6.0 mg/kg) animals were treated during different period of time (0.25, 1.0 and 4.0 hours). Animals treated with physiologic saline solution were used as control. After the labeled process; plasma (P), blood cells (BC), insoluble (IF-P, IF-BC) and soluble (SF-P, SF-BC) fractions were separated. Afterwards, the percentage of radioactivity (%ATI) in each fraction was calculated. The treatment during 1 hour with acetylsalicylic acid at higher dose has significantly (p<0.05) modified the fixation of 99m Tc on blood cells. Considering the results, we suggest that acetylsalicylic acid used at therapeutic doses may interfere with the nuclear medicine procedures related to these blood constituents.

Restricted access

The role of antibiosis components and antioxidant defense of rice genotypes, namely CR3006-8-2, RP4918-221, KAUM182-1, T12, IHRT-ME-25, W1263, Ptb33 (resistant check) and TN1 (susceptible check) was studied by phenotyping them against brown planthopper (BPH). Three genotypes, namely KAUM182-1, RP4918-221 and CR3006-8-2 were resistant to BPH and significantly low damage score (1.97–3.00); honeydew excretion area (46.76–49.64 mm2); nymphal survival (60.60–66.40%) and growth index (2.98–3.86) was recorded on them. Higher constitutive and induced level of soluble phenolics, peroxidase and polyphenol oxidase was observed in resistant genotypes without and with BPH infestation. A negative relationship between honeydew excretion, nymphal emergence, growth index and nymphal survival was observed with these biochemical constituents. Likewise, a reverse trend was observed between nymphal development period and biochemical constituents. These genotypes have emerged as a new source of resistance to BPH which can be used in hybridization programme to breed durable BPH resistant rice varieties.

Restricted access

It is well demonstrated that wheat-rye 1BL/1RS translocated chromosome leads to some valuable novel traits such as disease resistance, high yield and functional stay-green after anthesis. To understand the physiological mechanism of 1BL/1RS translocation responsible for osmotic stress, two wheat cultivars, CN12 and CN17, carrying the translocated chromosome and MY11 without the translocated chromosome were employed in the study. During 5-day osmotic stress, fresh weight inhibition, chlorophyll content, soluble protein content, MDA concentration, antioxidant enzymes activity and free polyamines content were examined. CN12 and CN17, especially cultivar CN17, registered greater biomass and minor oxidative damage compared with their wheat parent. Meanwhile, the concentration of Spd and Spm in CN17 was significantly higher than the others. In addition, we found a positive correlation of fresh weight inhibition (FWI) and Put concentration, and a negative one with the parameters (Spd + Spm): Put ratio, indicating the importance of higher polyamine (Spd and Spm) accumulation on the adaptation to osmotic stress. Therefore, we proposed that the accumulation of higher polyamines (Spd and Spm) should play an important role on the adaptation of 1BL/1RS translocation lines to osmotic stress and might be important factors for the origin of novel traits introduced by 1BL/1RS.

Restricted access
Cereal Research Communications
Authors: W.T. Xue, A. Gianinetti, R. Wang, Z.J. Zhan, J. Yan, Y. Jiang, T. Fahima, G. Zhao, and J.P. Cheng

Crop seeds are the main staples in human diet, especially in undeveloped countries. In any case, the diet needs to be rich not only in macro-nutrients like carbohydrates and protein, but also in micro-nutrients. Nevertheless, both the macro- and micro-nutrients presented in seeds largely vary in consequence of field and environment conditions. In this research, 60 lines of a barley RILs population segregating for the SSR marker Hvm74, which is genetically linked to the GPC (grain protein content) locus (HvNAM-1), were studied in 4 environments (two growing years and two field managements) by carrying out a comprehensive profile of seed macro- (starch, total nitrogen and total soluble protein) and micro-nutrients (phytate, phenolics, flavonoids, Pi, Zn and Fe). Under field conditions, all the components were largely affected by the environment, but TN (total nitrogen) exhibited high genotype contribution, while micro-nutrients displayed higher genotype × environments interactions (GEI) than macro-nutrients. In order to approach the effects of carbon-nitrogen (C–N) balance on other seed components, two C/N ratios were calculated: C/TN (CNR1) and C/TSP (CNR2). CNR2 exhibited stronger negative correlations with all micro-nutrients. Hence, the significant GEI and its negative relationships with CNR2 highlighted the different characters of micro-nutrients in barley seeds.

Open access

Sweet sorghum (Sorghum bicolor L. Moench cv. Róna) is a widely grown sugar crop that is used for bioenergy production. Since sorghum shows increased sensitivity to nutrient deficiency, the objective of this study was to reach an appropriate Cu level in plant tissues using various concentrations of Cu and ethylenediaminetetraacetic acid (EDTA) in order to enhance the photosynthetic activity and biomass production of plants. Copper accumulation increased in the root and stem of plants irrigated for 12 weeks with 0.1 μM CuCl2 both in the presence and absence of 300 μM EDTA and as a consequence, the plant-available Cu concentration in the soil extracts was lower at harvest. Although the copper content of leaves slightly increased, the transport of Fe and Mn, the microelements participating in light reactions of photosynthesis was negatively affected. In spite of this, 0.1 μM CuCl2 alone and with 200 or 300 μM EDTA enhanced the maximal CO2 assimilation rate (Amax) as a function of photon flux density (PPFD) and increased soluble sugar content in all plant parts. The dry mass of plants especially that of stems increased very significantly after 0.1 μM CuCl2 + 300 μM EDTA treatment. These results show that non-toxic concentration of copper in combination with suitable concentration of EDTA can enhance photosynthesis, biomass production, sugar content and the total copper accumulation in the shoot of sweet sorghum plants.

Restricted access