Search Results

You are looking at 71 - 80 of 2,292 items for :

  • "Thermal decomposition" x
  • Refine by Access: All Content x
Clear All

The thermal decompositions of the even silver dicarboxylates from silver oxalate to silver sebacate were studied. In vacuum, the dicarboxylates decomposed to give metallic silver, CO2 and organic diradicals as primary products, and polymers as secondary products. The higher silver dicarboxylates were much more stable to thermal treatment than silver oxalate, probably due to the initiation of decomposition of all carboxylates except silver oxalate by the rupture of a Ag-O and not a C-C bond.

Restricted access

decomposition of solids [ 1 , 3 – 5 ]. For many oxalates, the mechanism of thermal decomposition are well established and are commonly used as standard substances to confirm the exactness of theoretically developed models and equations of thermal decomposition

Restricted access

improved by Budrugeac. Experimental example The thermal decomposition of strontium carbonate (SrCO 3 ), which is used as the experimental example, was carried out in a 50 mL/min flow of N 2 at 0.5, 5, 7.5 K/min from

Restricted access

temperatures 650, 700 and 800 °C according to the case, for 6 h. Characterisation of powder The produced precursors have been chemically analysed and their thermal decomposition and behaviour were studied by classical

Restricted access

-doped yttrium aluminate Y 3 Al 5 O 12 :Eu 3+ phosphor with garnet structure (YAG:Eu). The aim of the study is to give a better understanding of the processes that take place during the thermal decomposition of the precursors. Therefore thermal analysis

Restricted access

Abstract  

The thermal decomposition of a series of compounds has been studied by thermogravimetry, mass spectrometry, nuclear magnetic resonance and elemental analysis. The combined use of mass spectrometry and thermogravimetry (MS and TG) in the analysis of these compounds has allowed characterization of the fragmentation pattern which was the objective of this research. The gaseous products, volatile condensed products and solid residues were identified by NMR and MS. Based on the product of thermal decomposition, the mechanism of thermal decomposition has been derived.

Restricted access

Thermal decomposition of zirconyl oxalates

I. Barium zirconyl oxalate

Journal of Thermal Analysis and Calorimetry
Authors: T. Gangadevi, M. Subba Rao, and T. R. Narayanan Kutty

Conditions for the preparation of stoichiometric barium zirconyl oxalate heptahydrate (BZO) have been standardized. The thermal decomposition of BZO has been investigated employing TG, DTG and DTA techniques and chemical and gas analysis. The decomposition proceeds through four steps and is not affected much by the surrounding gas atmosphere. Both dehydration and oxalate decomposition take place in two steps. The formation of a transient intermediate containing both oxalate and carbonate groups is inferred. The decomposition of oxalate groups results in a carbonate of composition Ba2Zr2O5CO3, which decomposes between 600 and 800° and yields barium zirconate. Chemical analysis, IR spectra and X-ray powder diffraction data support the identity of the intermediate as a separate entity.

Restricted access

Abstract  

Hydrated methanesulfonates Ln(CH3SO3)3 nH2O (Ln=La, Ce, Pr, Nd and Yb) and Zn(CH3SO3)2 nH2O were synthesized. The effect of atmosphere on thermal decomposition products of these methanesulfonates was investigated. Thermal decomposition products in air atmosphere of these compounds were characterized by infrared spectrometry, the content of metallic ion in thermal decomposition products were determined by complexometric titration. The results show that the thermal decomposition atmosphere has evident effect on decomposition products of hydrated La(III), Pr(III) and Nd(III) methanesulfonates, and no effect on that of hydrated Ce(III), Yb(III) and Zn(II) methanesulfonates.

Restricted access

Thermal decomposition of iron(II) and cobalt(II) hexaborates has been investigated. The methods applied to investigate the process were differential thermal analysis, derivatography, crystallooptics and x-ray study. The following iron(II) hexaborate hydrates, FeO · 3B2O3 · 7.5H2O, FeO · 3B2O3 · 5H2O, FeO · 3B2O3 · 0.5H2O; iron(III) borates, Fe2O3 · 6B2O3 and 2Fe2O3 · B2O3; cobalt(II)hexaborate hydrates CoO · 3B2O3 · 7.5H2O, CoO · 3B2O3 · 5H2O, CoO · 3B2O3 · 0.5H2O, CoO · 3B2O3 and the decomposition product 2CoO · 3B2O3 have been isolated. Hepta- and semihydrates of cobalt(II) and iron(II) hexaborates have been proved to be isomorphous. It has been established that in the case of cobalt and iron hexaborates the exothermic maximum refers to a decomposition reaction and to the formation of a borate containing a smaller proportion of boron and boric anhydride.

Restricted access

Abstract  

The thermal decomposition reactions of calcitic dolomite were investigated. Simultaneous TG/DTG/DTA were applied under non-isothermal conditions. From the recorded curves, the activation energies, pre-exponential factors and thermodynamic parameters of activation were calculated for the two thermal decomposition steps.

Restricted access