Search Results

You are looking at 81 - 90 of 206 items for :

  • "non-isothermal kinetics" x
  • Refine by Access: All Content x
Clear All

Abstract  

The thermo-oxidative degradation of poly(vinyl alcohol) (PVA) has been investigated by TG+DTG+DTA simultaneous analysis performed in static air atmosphere, at four heating rates, namely 3, 5, 10 and 15 K min−1. TG, DTG and DTA curves showed that, in the temperature range 25–700°C, four successive processes occur. The first process consisting in the loss of physical adsorbed water is followed by three processes of thermal and/or thermo-oxidative degradations. The processing of the non-isothermal data corresponding to the second process (the first process of thermo-oxidation) was performed by using Netzsch Thermokinetics — A Software Module for Kinetic Analysis. The dependence of the activation energy evaluated by Friedman’s isoconversional method on the conversion degree shows that the investigated process is complex one. The mechanism of this process and the corresponding kinetic parameters were determined by Multivariate Non-linear Regression Program and checked for quasi-isothermal experimental data. It was pointed out that the first process of thermo-oxidation of PVA consists in three consecutive steps having Avrami-Erofeev kinetic model. The obtained results can be used for prediction of the thermal lifetime of PVA corresponding to a certain temperature of use and an endpoint criterion.

Restricted access

Abstract  

A model describing the roles of bound and unbound vacancies is proposed in order to predict defect decay and short-range-order kinetics of quenched binary alloys during linear heating experiments. This is an alternative treatment of a previous approach. The model has been applied to the differential scanning calorimetry (DSC) curves of Cu-5 at.% Zn quenched from different temperatures. An expression to calculate the activation energy for migration of solute-vacancy complexes was also developed which make use of DSC trace data. A value of 89.120.32 kJ mol-1 was obtained for the above alloy. The relative contribution of bound and unbound vacancies to partition of effective activation energy corresponding to the ordering process as influenced by quenching temperature was also assessed.

Restricted access

Abstract  

A differential isoconversional non-linear procedure for evaluating activation energy from non-isothermal data is suggested. This procedure was applied to model reactions (simulations) and to the dehydration of CaC2O4⋅H2O. The results were compared with those obtained by other isoconversional methods.

Restricted access

Abstract  

The influence of the specific surface area on the crystallization processes of two silica gels with different specific surface areas has been investigated in non-isothermal conditions using DTA technique. The activation energies of the crystallization processes were calculated using four isoconversional methods: Ozawa-Flynn-Wall, Kissinger-Akahira-Sunose, Starink and Tang. It has been established that, the decrease of the surface area from S=252.62 m2 g−1, in the case of sample GS2, to S=2.52 m2 g−1, in the case of sample GS1, has determined a slight increase of the activation energy of the crystallization process of the gels. Regardless of the isoconversional method used, the activation energy (E α) decreases monotonously with the crystallized fraction (α), which confirms the complex mechanism of gels crystallization. It has been proved that the Johnson-Mehl-Avrami model cannot be applied for the crystallization processes of the studied silica gels.

Restricted access

Abstract  

The kinetic and thermal behaviour of the following compounds: R-HN-CO-NH-(CH2)n-C6H4-SO2NH2 where R=3,4-dichlorophenyl, phenyl, cyclohexyl; n=0, 1, 2 were studied by TG and DTA techniques. The compounds decompose in many steps; the last one corresponding to the burning of H2N–S–C6H4–C6H4–S–NH2 occurs with comparable reaction rates.

Restricted access

Summary Due to the criticism of the non-isothermal kinetic at a single heating rate, in the last period, data obtained at different heating rates are processed by means of elevated methods like Friedman’s (FD) differential-isoconversional method or the one suggested by Budrugeac and Segal (BS). The non-parametric kinetics (NPK) method, suggested by Serra, Nomen and Sempere offers two major advantages: the possibility of separation of two or more steps of a complex decomposition reaction; and the possibility of discrimination between the conversion, with regard to the temperature functions of a rate equation. Comparative data of FD, BS and modified version of NPK method are presented for decomposition of three compounds used as polyisocyanate stabilizer.

Restricted access

Abstract  

Thermal investigation has allowed us to show the changes undergone by a sort of nitrile-butadiene rubber (NBR) as a consequence ofγ-radiation-induced ageing. The parameters of the processes, which occur at progressive heating of the investigated samples, were determined. It was shown that for γ-irradiated samples the activation parameters corresponding to the thermo-oxidative process leading to solid products are correlated through the relation of compensation effect. Also, it was shown that, by γ-irradiation, NBR undergoes a relatively rapid change of its thermal behaviour which can be due to structural changes.

Restricted access

Abstract  

The complex Mn(Nica)2Cl2 (Nica=nicotinamide) was prepared, and its decomposition was studied by means of TG and DSC. The IR spectra of the products of thermal decomposition were examined at every stage. Kinetic analysis of the first stage of thermal decomposition was performed via the TG-DTG curves, and the kinetic parameters were obtained from analysis of the TG-DTG curves with integral and differential methods. The most probable kinetic function was suggested from a comparison of the kinetic parameters. Mathematical expressions were derived for the kinetic compensation effect.

Restricted access