Search Results
for 168 days on the kinetics and gelation process ( Au et al., 2015 ). They found that plasma and granules participate in the irreversible texture change. Wang and his co-authors examined the gelation time of egg yolk at –18 °C. They found that egg
). Since then, considerable interest has been devoted to oats for producing health-promoting food products. However, the utilisation of whole oat flours for extrusion cooking has elicited minimal attention because of poor expansion and hard texture ( Moisio
sample: It was ground to 75 µm and first tested according to the API procedure. The breakdown of the palygorskite fiber bundles commonly forming the texture of these clays tones by increasing the time and speed of shearing force. Increasing the
required by the Brazilian Legislation. The eggs were boiled at 100 °C for 15 min and then served to the panellists. Each panellist received a coded whole egg and a glass of water to drink between each treatment sample. Colour, aroma, odour, texture, taste
The objective of the research was to obtain aerated gels by magnesium and iron(II) ion induced gelation of preheated whey protein isolate dispersions. Preliminary research allowed finding conditions of the pH, protein, and ion concentrations to produce aerated gels capable of holding air bubbles. A novel method applying gelation and aeration process simultaneously was used. Aeration using a laboratory mixer at 2000 r.p.m. produced stronger aerated gels than using a homogenizer at 8000 r.p.m. The gelation process was monitored using an ultrasound viscometer and a constant increase of dynamic viscosity was noted. A different aerated gel microstructure was observed for magnesium and iron(II) induced gels, which probably resulted in differences in the texture and viscosity, as well. The aeration process decreased hardness. In some cases texture parameters correlated with the viscosity measured using an ultrasound viscometer. Aerated whey protein gels could be applied as matrices for food applications or to controlled release of active ingredients.
According to international studies the consumer preference of apple varieties is defined by the flavour and texture and the consumers’ opinion about the heavily sour character, the mushy texture and the barely chewable peel is negative. However, the preference level and nutritional values of the apple juices are determined by the variety used, the maturity level and the processing of the fruits. In our study we conducted the external and internal preference mapping of two apple juices with 100% fruit content according to the industrial practice. It propounded several questions about the method of the preference mapping which were the following: product specific training of the assessors, panel performance monitoring, number of samples, representativity, scale use and marking, reasons of the singular matrix, segmentation method, segmentation criterion, power of the paired post-hoc analysis, number of the principal components (PC’s), etc. Finding the answers of the questions above it is possible to establish a good preference mapping practice.
Current study was taken up to develop probiotic chocolate using indigenous probiotic culture L. helveticus MTCC 5463. Preliminary trials included optimization of culture inoculums and physical form (freeze-dried or frozen concentrated) of addition and finally optimized product was tested for probiotic viability, texture, and organoleptic parameters at regular intervals during storage at 10±2 °C for 30 days. Probiotic chocolates prepared via incorporation of freeze dried culture (3% w/w) had acceptable organoleptic quality and had a similar behaviour as the control chocolate during storage. However, the viability of probiotic bacteria (2.42×108 CFU g–1) was achieved only up to 15 days of storage at 10±2 °C.
The total viable cell count of bacteria in vacuum-packaged chilled minced beef has been decreased equally, by approx. two log-cycles, as an effect of 1.5-2.0 kGy gamma radiation or 200-300 MPa high hydrostatic pressure (UHP) treatment for 20 min. Coliform bacteria could be eliminated to non-detectable levels by the same treatments. The shelf-life of both untreated and non-thermally pasteurised samples were limited mainly by growth of lactic acid bacteria. At about equal bactericidal effect, more drastic changes of texture and colour occurred in UHP-pasteurized minced beef samples than in the radiation-pasteurized ones. Whereas radiation pasteurisation caused minimal changes in appearance, texture and DSC-thermograms of minced beef, UHP-pasteurisation of the raw samples proved to be strongly discolouring by denaturing the muscle pigments and causing extensive denaturation of the myofibrillar proteins. The water holding capacity of irradiated samples decreased, while that of high pressure treated ones increased as compared to the untreated control. Near infrared spectrometry and electronic nose measurements gave promising results to make distinctions non-destructively on changes of various physical-chemical changes and quality parameters as a function of pasteurising treatments and/or storage.
The aim of the current paper was to elucidate the influence of temperature and time on acrylamide formation and physico-chemical characteristics of bread. Additionally, the effect of asparaginase addition to bran was evaluated. With increasing baking time and temperature, the amount of acrylamide (µg kg−1) increased. The results indicated that the acrylamide concentration in treated samples with asparaginase was significantly less than those without asparaginase treatment. Based on Pearson’ test, it was found that there was a significant correlation between baking temperature and acrylamide concentration (R=0.99, P=0.025; and R=0.98, P=0.026 for the samples prepared by baking for 2.5 min and 3 min, respectively). The firmness of bread samples increased with increasing baking temperature (P>0.05), while asparaginase addition did not significant affect the textural characteristics of the final product. Breads baked at 320 °C for 3 min were more acceptable by the sensory panel in terms of their texture and chewiness, whereas the samples baked at 370 °C for 2.5 min had the lowest score in comparison to other evaluated samples.
The comparative efficacy of 0.4% carboxymethyl cellulose (CMC) and 0.3% sodium alginate (SA) was evaluated as fat replacer in low-fat (<0.5% milk fat) mozzarella pre-cheese on the basis of physico-chemical, processing, textural, and colour profile, nutritional and sensory attributes. High-fat mozzarella cheese (prepared from milk with 6.0% fat) was taken as control (FFMC), whereas low-fat mozzarella cheese (prepared from milk with <0.5% fat) without any fat replacer (LFMC) taken as negative control. The per cent yield was lower in low fat cheese with CMC (LFMC-CMC), whereas in low fat cheese with SA (LFMC-SA) it was comparable with FFMC. The moisture and protein contents were higher (P<0.05) in low-fat mozzarella cheese (LFMC-CMC, LFMC-SA) than in FFMC. The energy content in LFMC-CMC and LFMC-SA was 44 percent lower than in FFMC. The meltability decreased, whereas melt time increased in LFMC-CMC and LFMC-SA compared to FFMC. The processing and nutritional attributes were comparable in both treatments. Hardness increased, whereas chewiness decreased in low-fat cheese. However, type of fat replacer did not affect hardness of the product. Gumminess was higher (P<0.05) in LFMC-CMC than in LFMC-SA. The sensory panellists rated LFMC-SA better for flavour and overall acceptability than LFMC-CMC. The appearance, texture, and juiciness were comparable in low-fat and high-fat mozzarella cheese. Results indicated that 0.3 per cent SA can be successfully used for processing of low-fat cheese.