Search Results

You are looking at 81 - 90 of 215 items for :

  • "thermodynamic functions" x
  • Refine by Access: All Content x
Clear All

Abstract

The temperature dependence of the molar heat capacities of the tellurites PbTeO3, Pb2Te3O8 and Ge(TeO3)2 are determined. By statistical manipulation of the values obtained, the parameters in the equations for the corresponding compounds showing this dependence are determined using the least-squares method. These equations and the standard molar entropies are used to determine the thermodynamic functions Δ0 T S m 0, ΔT T H m 0 and (Φm 00 T H m 0/T) for T′=298.15 K.

Restricted access

Abstract  

The temperature dependence of the molar heat capacities of the tellurites Fe2(TeO3)3, Fe2TeO5 and Fe2Te4O11 were determined. By statistical manipulation of the values obtained, the parameters in the equations for the corresponding compounds showing this dependence were determined using the least-squares method. These equations together with the standard molar entropies were used to determine the thermodynamic functions Δ0 T S m 0, ΔT T,H m 0 and (Φm 0 + Δ0 T’ H m 0 / T) for T’=298.15 K.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors:
X.-C. Lv
,
Z.-C. Tan
,
Z.-A. Li
,
Y.-S. Li
,
J. Xing
,
Q. Shi
, and
L.-X. Sun

Abstract  

The (R)-BINOL-menthyl dicarbonates, one of the most important compounds in catalytic asymmetric synthesis, was synthesized by a convenient method. The molar heat capacities C p,m of the compound were measured over the temperature range from 80 to 378 K with a small sample automated adiabatic calorimeter. Thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the above temperature range with a temperature interval of 5 K. The thermal stability of the substance was investigated by differential scanning calorimeter (DSC) and a thermogravimetric (TG) technique.

Restricted access

Abstract  

A new extractant, N-octanoyl-2-methylpiperidine (OMPPD) has been synthesized. The extraction of U(VI) with N-octanoyl-2-methylpiperidine (OMPPD) in nitric acid has been studied. The dependence of the partition reaction of U(VI) on the concentrations of nitric acid, extractant, salting-out agent LiNO3, and temperature has been studied. In the light of the results, the extraction mechanism is discussed. The synergistic extracted complexes may be presented as UO2(NO3)2(OMPPD)2 . The related thermodynamic functions were calculated.

Restricted access

Abstract  

The liquid-liquid extraction behavior of 2-ethylhexyltolylsulfoxide (EHTSO) towards uranium(VI) contained in nitric acid aqueous solution has been investigated. It was found that the extraction increases with increasing nitric acid concentration up to 5.0 mol/l and then decreases. Extraction also increases with increasing extractant concentration. The extracted species appears to be UO2(NO3)2 .2EHTSO. The influences of temperature, NH4NO3 and Na2C2O4 concentrations on the extraction equilibrium were also investigated and the thermodynamic functions of the extraction reaction were obtained.

Restricted access

Abstract  

The liquid-liquid extraction behavior of octyldodecylsulfoxide (ODoSO) towards uranium(VI), contained in nitric acid aqueous solution, has been investigated. It was found that the extraction increased with increasing nitric acid concentration up to 2.0 mol/l and then decreased. Extraction also increases with increasing extractant concentration. The extracted species appears to be UO2(NO3)2 .2ODoSO. The influences of temperature, sodium nitrate and oxalate concentrations on the extraction were also investigated and the thermodynamic functions of the extraction reaction were obtained.

Restricted access

Abstract  

A new bifunctional extractant named phenyl-N,N-dibutylcarbamoylmethyl sulfoxide (PCMSO) is synthesized and characterized in order to investigate its selectivity and capability in the extraction from acidic nitrate media in nuclear reprocessing. The extraction of uranium (VI) with PCMSO in toluene has been studied at various concentrations of nitric acid, extractant and salting-out agent (LiNO3). The mechanism of extraction is discussed in the light of the results obtained. The extracted species has also been investigated using FT-IR spectrometry. The related thermodynamic functions were calculated. The IR spectral study was also made of the extracted species.

Restricted access

Abstract  

The extraction coefficients for the actinyl ions extracted with tri-n-butyl phosphate (TBP) from 2.0M CH3 COOH, CH2 ClCOOH and CCl3 COOH in various temperatures have been measured. Distinct discontinuities of the lnD vs. 1/T plots were interpreted as a proof for the extraction mechanism changes. Results obtained were used to calculate the thermodynamic functions of the actinyl complexation in the aqueous phase and of the partition process. It is proposed that the inner-sphere complex formation increases in the order acetates < chloroacetates < trichloroacetates.

Restricted access

Abstract  

The extraction behavior of octahedral and tetrahedral cobalt(II) complexes from aqueous nitrate medium was studied in the system 8-hydroxyquinoline (HOX) and dibenzo-18-crown-6 (Db 18C6) or dibenzylamine (DBA) in chloroform at different temperatures to evaluate the thermodynamic functions as well as the equilibrium constants of each reaction. The stoichiometry of the extracted organic phase species were established to be Co(OX)2·Db18C6 for the octahedral cobalt and Co(OX)2·DBA for the tetrahedral cobalt.

Restricted access

Abstract  

The thermodynamic functions for the extraction of Sc3+ by liquid cation exchangers HD and HDEHP are determined radiometrically by the temperature coefficient method. The role of diluent dielectric constant on the extraction of Sc3+ by HD is also studied. The thermodynamic parameters determined indicated that the free energy variation for the extraction of Sc3+ by HD is mainly determined by the entropic terms arising from the hydration—dehydration process of the exchanged ions. In the case of HDEHP as extractant, the free energy variations are determined mainly by the entalpic terms of the system.

Restricted access