Search Results
Abstract
The coke removal of HZSM-12 zeolite deactivated in the reaction of n-heptane cracking was studied by thermogravimetry using two multiple heating rate integral kinetics models proposed by Ozawa-Flynn-Wall and Vyazovkin to obtain the activation energy of process of thermoxidation of coke. The results obtained by both models presented excellent accordance with the related literature.
Abstract
In this work was studied the acid properties of a series of HZSM-12 zeolites with different Si/Al molar ratio. The samples of ZSM-12 were synthesized by the hydrothermal method starting from a gel with the following molar composition: 20MTEA:10Na2O:xAl2O3:100SiO2:200H2O, where: x=2, 1, 0.67 and 0.50, respectively. After the synthesis, the samples of ZSM-12 were ion-exchanged NH4Cl solution to obtain zeolite in the acid form (HZSM-12). The acid properties were evaluated by n-butylamine thermodesorption in a TG equipment at three different heating rates. The model-free kinetic model was applied in the TG integral curves to estimate the apparent activation energy (E a) of the n-butylamine desorption process. The results obtained showed that the HZSM-12 zeolite presents two kinds main of acid sites: one with E a in the range of 115-125 kJ mol-1 classified as weak and other kind with E a varying of 230-250 kJ mol-1 classified as strong.
Abstract
The study of the incorporation of rare earth elements as additives in Y zeolites is a very interesting field of research, mainly by its potential application as additives in catalytic cracking process. In this work was studied the thermal and structural properties of cerium, holmium and samarium supported on HZSM-12 zeolite. The obtained materials were characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR), nitrogen adsorption, thermogravimetry (TG/DTG), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). TG/DSC/DTA analyses showed that the dehydration temperatures of RE/HZSM-12 zeolites (RE=Ce, Ho, Sm) increase in relation to pure HZSM-12. The acid properties were investigated by pyridine thermo desorption via TG. The results showed two events of mass loss attributed to elimination of pyridine adsorbed on the weak+medium acid sites and on the strong acid sites.