Search Results

You are looking at 1 - 4 of 4 items for :

  • "Hypoxia imaging agent" x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All

Abstract  

A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with the amino analogue of metronidazole (MN) was synthesized through a multiple-step reaction. HYNIC-MN could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) and ethylenediamine -N,N′-diacetic acid (EDDA) as coligands to form the 99mTc–HYNIC–MN complex in high yield (>95%). Its partition coefficient indicated that it was a good hydrophilic complex. The tumor cell experiment showed that the 99mTc–HYNIC–MN complex had a certain hypoxic selectivity. The biodistribution studies of 99mTc–HYNIC–MN in Kunming mice bearing S180 tumor showed a favorable tissue distribution profile with high tumor uptake, and low or negligible accumulation in non-target organs, suggesting 99mTc–HYNIC–MN would be a novel potential tumor hypoxia imaging agent.

Restricted access

Abstract  

The dimercaptosuccinic acid metronidazole ester (DMSAMe) was synthesized and radiolabeled with 99mTc to form the 99mTc-DMSAMe complex in high yield. The radiochemical purity of the 99mTc-DMSAMe complex was over 90%, as measured by TLC and by HPLC, without any notable decomposition at room temperature over a period of 6 h. Its partition coefficient indicated that it was a lipophilic complex. The tumor cell experiment and the biodistribution in mice bearing S 180 tumor showed that the 99mTc-DMSAMe complex had a certain hypoxic selectivity and accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time, suggesting it would be a possible tumor hypoxia imaging agent.

Restricted access

Abstract  

A new automated synthesis procedure of 1-H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO), a specific hypoxia imaging agent with great significances for the noninvasive, dynamic hypoxia evaluation of cancer, was developed by modifying Explora FDG4 module, a commercial [18F]FDG production system, in this study. Its radiochemical synthesis was carried out via two sequent reaction steps, i.e. the nucleophilic displacement of labeling precursor 1-(2′-nitro-1′-imidazolyl)-2-O-tetrahydropyranyl-3-O-tosyl-propanediol (NITTP) with activated 18F- ion at 100 °C for 8 minutes, and the following hydrolysis with 1M HCl at 100 °C for 5 minutes and neutralization with 1M NaOH. Two-pot reaction with two independent separations was adopted to assure the good separation of final product via solid phase extraction (SPE) based upon combined Sep-pak cartridges instead of high performance liquid chromatography (HPLC). This fast, reliable preparation route of 18F-FMISO could complete within 50 minutes with about 55% of high radiochemical yield (with decay correction) and more than 98% of good radiochemical purity. The modified module could perform multiple runs of production of [18F]FMISO.

Restricted access

Abstract  

1-H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO), is the most used hypoxia-imaging agent in oncology and we have recently reported a fully automated procedure for its synthesis using the Nuclear Interface FDG module and a single neutral alumina column for purification. Using 1-(2′-nitro-1′-imidazolyl)-2-O-tetra-hydropyranyl-3-O-toluenesulfonylpropanediol (NITTP) as the precursor, we have investigated the yield of [18F]FMISO using different reaction times, temperatures, and the amount of precursor. The overall yield was 48.4 ± 1.2% (n = 3), (without decay correction) obtained using 10 mg NITTP with the radio-fluorination carried out at 145 °C for 3 min followed by acid hydrolysis for 3 min at 125 °C in a total synthesis time of 32 ± 1 min. Increasing the precursor amount to 25 mg did not improve the overall yield under identical reaction conditions, with the decay uncorrected yield being 46.8 ± 1.6% (n = 3), but rather made the production less economical. It was also observed that the yield increased linearly with the amount of NITTP used, from 2.5 to 10 mg and plateaued from 10 to 25 mg. Radio-fluorination efficiency at four different conditions was also compared. It was also observed by radio thin layer chromatography (radio-TLC) that the duration of radio-fluorination of NITTP, not the radio-fluorination temperature favoured the formation of labeled thermally degraded product, but the single neutral alumina column purification was sufficient enough to obtain [18F]FMISO devoid of any radiochemical as well as cold impurities.

Restricted access