Search Results

You are looking at 1 - 7 of 7 items for :

  • "Knudsen effusion method" x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All

Abstract  

A new pressure DSC module (Mettler DSC27HP) and its abilities for vapor pressure determination in the range of subambient pressure to 7 MPa are presented. To compare the new to an established method, vapor pressures of caffeine, naphthalene and o-phenacetin have been determined both by pressure DSC and the Knudsen effusion cell method. These results, including the derived heats of evaporation and heats of sublimation, are compared to literature values.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: A. Bessonov, N. Morozova, P. Semyannikov, S. Trubin, N. Gelfond, and I. Igumenov

Abstract  

The thermal properties of dimethylgold(III) carboxylates of general formula [(CH3)2Au(OOCR)]2 (R=methyl (1), tert-buthyl (2), trifluoromethyl (3), or phenyl (4)) in solid state have been investigated by the thermogravimetric analysis. The temperature dependences of saturated vapour pressure of complexes have been studied by the Knudsen effusion method with mass spectrometric indication. The thermodynamic parameters Δsub H T 0 and Δsub S T 0 of the sublimation processes have been calculated. Thermal decomposition of the vapour of complexes 1 and 2 has been studied by means of high temperature mass spectrometry in vacuum, and by-products of decomposition have been determined.

Restricted access

Abstract  

The vapour pressures of six para-substituted benzoic acids were measured using the Knudsen effusion method within the pressure range (0.1–1 Pa) in the following temperature intervals: 4-hydroxybenzoic acid (365.09–387.28) K; 4-cyanobenzoic acid (355.14–373.28) K; 4-(methylamino)benzoic acid (359.12–381.29) K; 4-(dimethylamino)benzoic acid (369.29–391.01) K; 4-(acetylamino)benzoic acid (423.10–443.12) K; 4-acetoxybenzoic acid (351.28–373.27) K. From the temperature dependence of the vapour pressure, the standard molar enthalpy, entropy and Gibbs energy of sublimation, at the temperature 298.15 K, were derived for each of the studied compounds using estimated values of the heat capacity differences between the gaseous and the crystalline phases. Equations for estimating the vapour pressure of para substituted benzoic acids at the temperature of 298.15 K are proposed.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Ricardo Picciochi, Hermínio Diogo, and Manuel Minas da Piedade

Abstract  

Combustion calorimetry, Calvet-drop sublimation calorimetry, and the Knudsen effusion method were used to determine the standard (p o = 0.1 MPa) molar enthalpies of formation of monoclinic (form I) and gaseous paracetamol, at T = 298.15 K:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right) = - ( 4 10.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right) = - ( 2 80.5 \pm 1. 9){\text{ kJ}}\;{\text{mol}}^{ - 1} .$$ \end{document}
From the obtained
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ cr I}}} \right)$$ \end{document}
value and published data, it was also possible to derive the standard molar enthalpies of formation of the two other known polymorphs of paracetamol (forms II and III), at 298.15 K:
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crII}}} \right) = - ( 40 8.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1}$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ crIII}}} \right) = - ( 40 7.4 \pm 1. 3){\text{ kJ}}\;{\text{mol}}^{ - 1} .$$ \end{document}
The proposed
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{O}}_{ 2} {\text{N}},{\text{ g}}} \right)$$ \end{document}
value, together with the experimental enthalpies of formation of acetophenone and 4′-hydroxyacetophenone, taken from the literature, and a re-evaluated enthalpy of formation of acetanilide,
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}} \left( {{\text{C}}_{ 8} {\text{H}}_{ 9} {\text{ON}},{\text{ g}}} \right) = - ( 10 9. 2\,\pm\,2. 2){\text{ kJ}}\;{\text{mol}}^{ - 1} ,$$ \end{document}
were used to assess the predictions of the B3LYP/cc-pVTZ and CBS-QB3 methods for the enthalpy of a isodesmic and isogyric reaction involving those species. This test supported the reliability of the theoretical methods, and indicated a good thermodynamic consistency between the
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{f}} H_{\text{m}}^{\text{o}}$$ \end{document}
(C8H9O2N, g) value obtained in this study and the remaining experimental data used in the
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\Updelta_{\text{r}} H_{\text{m}}^{\text{o}}$$ \end{document}
calculation. It also led to the conclusion that the presently recommended enthalpy of formation of gaseous acetanilide in Cox and Pilcher and Pedley’s compilations should be corrected by ~20 kJ mol−1.
Restricted access

is in a very good agreement with the reported results using the most sensitive techniques used in measuring sublimation rate of TNT: QCM and Knudsen effusion method 97 ± 7 and 103 kJ/mol, respectively [ 4 , 18 ]. However, a larger value of 131 kJ

Restricted access

. Goldfarb , JL , Suuberg , EM 2008 Vapor pressures and enthalpies of sublimation of ten polycyclic aromatic hydrocarbons determined via the Knudsen effusion method . J Chem Eng Data 53 : 670 – 676 10.1021/je7005133

Restricted access