Search Results

You are looking at 1 - 10 of 20 items for :

  • Refine by Access: All Content x
Clear All

Thermally induced reorganization in LCP fibers

Molecular origin of mechanical strength

Journal of Thermal Analysis and Calorimetry
Authors: C. Saw, G. Collins, J. Menczel, and M. Jaffe

Abstract  

The molecular reorganization occurring in liquid crystalline polymer fiber during heat treatment is of great interest for many commercial reasons. Using thermal analysis techniques, WAXS and real time temperature dependent synchrotron SAXS, the structure and morphology of commercial LCP (liquid crystalline polymer), Vectran®, HBA/HNA (p-hydroxybenzoic acid/6-hydroxy-2-naphthoic acid), and its variant polymer fiber COTBP, HBA/HNA/BP/TA (BP-benzophenone, TA-terephthalic acid), have been examined. Both fibers have the typical liquid crystalline polymer structure, i.e., highly aligned with aperiodic sequencing along the fiber axis. There is a three-fold increase in strength in both fibers with heat treatment; however, the modulus is observed to increase significantly in COTBP but not in Vectran®. This paper reports on the changes and the differences on the structural and morphological behavior for both the as-spun and heat-treated LCP fibers. We propose an ‘oriented entanglement’ model to describe the differences between the two polymer fibers.

Restricted access

Abstract  

Liquid crystalline polymer/polyamide 66 (LCP/PA66) and LCP/poly(butyl terephthalate) (LCP/PBT) blends were compounded using a Brabender Plasticorder equipped with a mixing chamber. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30 mol% of p-amino benzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The Flory-Huggins interaction parameters (χ12) of the LCP/ PA66 and LCP/PBT blends are estimated by melting point depression from DSC measurement. The results indicate that c12 values all are negative for LCP/PA66 and LCP/PBT blends, and when the LCP content in these blends is more than 10 mass%, the absolute value of χ12 decreases. Thereby, we can conclude that LCP/PA66 and LCP/PBT blends are fully miscible in the molten state, the molecular interaction between the LCP and PA66 is stronger than that between LCP and PBT. As the LCP content in LCP/PA66 and LCP/PBT blends is more than 10 mass%, the molecular interaction between LCP and matrix polymer decreases.

Restricted access

Abstract  

The relaxation of electric field-induced polar orientation in a side-chain-bearing liquid-crystalline polysiloxane was measured by means of thermally stimulated depolarization currents. Different relaxation mechanisms were identified and characterized: the glass transition cooperative relaxation exhibits compensation behaviour. On the other hand, lowerT g and upperT g discharges were observed and their molecular nature is discussed.

Restricted access

combination of properties. Over the past several decades, blending of liquid crystalline polymer (LCP) with commodity polymers resulting in the so-called in situ microfibrillar-reinforced composite [ 1 , 2 ] has been known to exhibit excellent mechanical

Restricted access

Abstract  

Vinylated polyhedral oligomeric silsesquioxane (POSS-M) was prepared by the reaction of POSS containing amine groups with acrylic acid. Azobenzene liquid crystalline copolymer (LCP-POSS) was then synthesized with 6.0 mol% POSS-M and 94.0 mol% acrylate monomer containing azobenzene liquid crystalline moiety (Azo-M) by free-radical copolymerization. Homopolymer of Azo-M (LCP) was also synthesized under the same conditions. Their thermal properties and liquid crystallinity were characterized by Thermal gravimetric analysis (TG), differential scanning calorimetry (DSC), Wide-angle X-ray diffraction experiments (XRD) and polarized optical micrographs (POM). The results showed that LCP-POSS has higher thermal stability and glass transition temperature than pure LCP due to the incorporation of the rigid cage-like POSS. Especially, LCP-POSS exhibits enantiotropic smectic and nematic liquid crystalline behaviors, its smectic-nematic transition temperature (T SN) and nematic-isotropic transition temperature (T NI) are higher than those of pure LCP, which may promote and extend its applications on stimuli-responsive materials and devices.

Restricted access

Abstract  

A calorimetric study of blends of poly(ethylene terephthalate-co-p-oxybenzoate), PET/PHB, with poly(butylene terephthalate), PBT has been carried out in the form of as-spun and drawn fibres. DSC melting and crystallization results show that PBT is compatible with LCP and the crystallization of PBT decreases by the addition of LCP in the matrix. The crystallization behaviour of blend fibres is investigated as a function of temperature of crystallization. A detailed analysis of the crystallization course has been made utilizing the Avrami expression. The isothermal calorimetric measurements provide evidence of decrease of rate of crystallization of PBT on addition of the liquid crystalline component up to about 50% by weight. The values of the Avrami exponents change in the temperature range from 200° to 215°C. Dimensionality changes in crystallization could be due to LCP mesophase-transition.

Restricted access

Thermoanalytical study of nucleating effects in polypropylene composites

I. Liquid crystal polymer containing polypropylene

Journal of Thermal Analysis and Calorimetry
Authors: Gy. Marosi, Gy. Bertalan, P. Anna, A. Tohl, R. Lágner, I. Balogh, and P. F. La Mantia

Nucleating and transcrystallization behaviour of additives in engineering PP composites and the effect of modified interfacial structure is the subject of this series of papers. The first part concentrates on polypropylene/liquid crystalline polyester blends. Increased crystallisation temperature and degree of crystallinity of polypropylene is characteristic to the blends containing different amount of LCP additive. Transcrystallization process governs the formation of crystalline structure in these systems in course of isothermal crystallisation at 132‡C. The nucleating effect of LCP gives rise to more uniform crystalline structure in the polypropylene phase.

Restricted access

Network-based methods are being actively developed to respond to the needs for operational assessments of the degree of landscape connectivity and of the impact of landscape changes in ecological flows and related ecological processes. Among these, a recent paper by Matisziw and Murray (2009) presented the C index as an adequate and advantageous way of ranking habitat patches by their importance for the maintenance of landscape connectivity. We show that this index is equivalent and conveys the same information in undirected graphs as a previously described index, the landscape coincidence probability (LCP), which can be readily computed in any landscape network through the Conefor Sensinode software package. We slightly generalize the LCP definition for cases involving asymmetric dispersal, which makes LCP compatible with C and maintains the equivalency between both indices in directed graphs. We place LCP and C in a broader context of other existing indices and ongoing developments and describe how some of these may be better suited for the analysis of the connectivity in landscape networks and their changes. We conclude by highlighting the need (1) to go beyond the identification of unobstructed movement paths or habitat components (sets of interconnected patches) when pursuing the most appropriate landscape connectivity indices and (2) for increased efforts in assessing and reporting the potential overlaps, coincidences and synergies between the available approaches in order to guide the final user and facilitate index selection in a densely populated metric space.

Restricted access

Abstract  

Vectra® liquid crystalline polymers (LCP's) were introduced as commercial products in the mid-1980's. The first of these (Vectra A130) was a wholly aromatic thermotropic copolyester ofp-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid. Vectra A130 is a thermotropic LCP that can be melt spun into filaments that on heat treatment are characterized by high strength and high modulus. Vectra resin can also be extruded into films. In the fiber or film form this material is commercially known as Vectran®. Heat treatment enhances the tensile strength of Vectran fiber variants. Because of this, the elucidation of the physical transformations taking place in the internal structure of the material during heating has always been an important subject. Several thermal techniques are used to indicate clearly that what is observed as a “glass transition” is unlike the conventional glass transition in typical semicrystalline polymers. There is also an indication of the presence of multiple states of mesophase aggregation that collapse into a single state when taken to high enough temperatures.

Restricted access

realities. http://www.law.duke.edu/journals/lcp . Letöltés ideje: 2011. 01. 20 Saks, Michael J. – Kidd, Robert F. (1980–1981): Human information processing and adjudication: trial by heuristics. Law and Society Review 15

Restricted access