Search Results

You are looking at 1 - 4 of 4 items for :

  • Materials and Applied Sciences x
  • Refine by Access: All Content x
Clear All

The influence of seasonal variations on the chemical composition and composition of fatty acids in five commercially important freshwater fish species from the Danube: white bream, bream, vimba, zope, and Prussian carp, during May, July and September was determined. Changes in the chemical composition of meat of all examined species had the same tendencies. Water and protein content in the meat decreased, while fat content increased. The most frequent fatty acids in the meat of all the examined fish were the following: 18:1 n-9 (oleic), 16:0 (palmitic), 16:1 (palmitoleic), 18:2 n-6 (linoleic), 20:1 (eicosenoic), 20:5 n-3 eicosapentaenoic acid (EPA), 20:4 n-6 arachidonic acid and 22:6 n-3 docosahexaeonic acid (DHA). The content of saturated fatty acids (SFA) ranged from 25.03% to 32.43% and displayed a tendency to increase during the observed period. The total content of the n-6 group in the meat of Prussian carp was higher than in other species, which was probably a consequence of specific diet. The total content of n-3 fatty acids in the meat of white bream, bream, vimba and zope was the highest in May, and it declined during July-September. We can conclude that the meat of white bream and vimba contains high nutritional values in terms of EPA and DHA content. The n-3/n-6 ratio was also very favourable: 0.9 to 2.0 in the meat of white bream, bream, vimba and zope, with a clear downward tendency in the observed period.

Restricted access

The fatty acid composition of wild sea bass (Dicentrarchus labrax L.) and gilthead sea bream (Sparus auratus L.) were compared with gas chromatography. These two species are widely cultivated in Europe and represent a significant portion of consumed fish in the region. The aim of the present work was to compare the nutritional value of fatty acids in the flesh of wild sea bass and sea bream. Significant differences were observed in the saturated and poly-unsaturated fatty acid content. The presence of lauric, myristic and palmitic acids in the flesh of sea bream in quantities far exceeding those in sea bass make sea bream less suitable for preventing cardiovascular diseases. The poly-unsaturated n-3 fatty acids with both anti-atherogenetic and anti-inflammatory action in sea bass surpass those of sea bream by a total of 30%. Sea bass also contains 60% more C22:6n-3. Compared to sea bream, sea bass appears to be more suitable for the diet of people suffering from cardiac diseases, angiopathy, inflammations and Alzheimer’s disease.

Restricted access

the uniformity value 0.3, which is required by the BREEAM standard. Fig. 6. Daylight illuminance comparison between bream standard and the living room and Room 1 a) illuminance in the summer (June); b) illuminance in the winter (December) Fig. 7

Open access
Acta Alimentaria
Authors:
Sz. Luzics
,
Á. Tóth
,
T. Barna
,
E. Szabó
,
I. Nagy
,
B. Horváth
,
I. Nagy
,
Z. Varecza
,
I. Bata-Vidács
, and
J. Kukolya

, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream ( Sparus aurata ) . Aquaculture , 300 ( 1–4 ): 182 – 188 . https://doi.org/10.1016/j.aquaculture.2010.01.015 . Eriksson , K.E.L. , Blanchette R.H. , and Ander , P

Open access