Search Results

You are looking at 1 - 10 of 2,866 items for :

  • "characterization" x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All

Five epoxy resins of different chemistry and functionality were cured with DDS (4,4′-diaminodiphenyl sulfone) using 2, 8 and 14 h curecycles. Both Differential Scanning Calorimetry (DSC) and Thermomechanical Analysis (TMA) were used to characterize reaction behavior and cured properties of the resin systems. In addition, static mechanical tests and density measurements were integrated with the thermal characterization methods to correlate resin properties with process time. Flexural three-point bending experiments showed that the resins tended to have higher yield stress and toughness values at extended cure times. The improved mechanical properties could be attributed to the full development of the epoxy molecular structure, in the form of cross-linked networks and molecular rearrangement. These results suggest that extended cure times or high temperature post-curing may be required to obtain the resin's ultimate mechanical properties for high performance composites.

Restricted access

Abstract  

The results of thermodynamics and characterization of alloys in ternary Ag-In-Sn system is presented in this paper. Thermodynamic properties, in three investigated sections with molar ratio In:Sn=1:1, 1:2 and 1:4, have been calculated at the temperature of 1423 K using different predicting methods (general solution model, Toop, Hillert, Muggianu, Kohler, Redlich-Kister), compared mutually and with literature experimental data. The alloys in investigated sections have been characterized using DTA, XRD, SEM and optic microscopy.

Restricted access

Abstract  

The synthesis and characterization of lanthanide(III) citrates with stoichiometries 1:1 and 2:3; [LnL·xH2O] and [Ln2(LH)3·2H2O], Ln=La, Ce, Pr, Nd, Sm and Eu are reported. L stands for (C6O7H5)3− and LH for (C6O7H6)2−. Infrared absorption spectra of both series evidence coordination of carboxylate groups through symmetric bridges or chelation. X-ray powder patterns show the amorphous character of [LnL·xH2O]. The compounds [Ln2LH3·2H2O] are crystalline and isomorphous. Emission spectra of Eu compounds suggest C 2v symmetry for the coordination polyhedron of [LnL·xH2O] and C 4v for [Ln2(LH)3·2H2O]. Thermal analyses (TG-DTG-DTA) were carried out for both series. The thermal analysis patterns of the two series are quite different and both fit in a 4-step model of thermal decomposition, with lanthanide oxides as final products.

Restricted access

Abstract  

Good quality benzophenone (BP) crystals were grown by solution technique using CHCl3 as solvent by adopting slow evaporation method at room temperature. The grown crystals were subjected to various characterization studies to analyze its purity and applications. The condensation product 2,4-dinitro phenyl hydrazone of benzophenone (DNPBP) was prepared by adopting standard procedure. Then mixed crystal of BP and DNPBP was also grown by solution growth. Both the condensation product and mixed crystals were characterized by UV, FTIR, 1H NMR spectra. Thermal (TG and DTA) studies have proved to be very useful techniques not only to study the thermal properties of BP, DNPBP and mixed crystal but also to study their purity. Second harmonic generation (SHG) efficiency of the grown crystals was determined.

Restricted access

chromatography–tandem mass spectrometry (LC–MS/MS) in human plasma [ 3 – 6 ]. Moreover, there are reports available on synthesis and characterization of process-related impurities of olmesartan medoxomil [ 7 , 8 ]. AT is also reported for the determination of

Open access

In the present study, the degradation behavior of Fenofibrate under different International Conference on Harmonization (ICH) suggested conditions was studied. Characterization of degradation products by liquid chromatography–tandem mass spectrometry (LC–MS/MS) studies in solution form was done, and the possible mechanism for the formation of degradants is discussed. Fenofibrate was subjected to different hydrolytic stress conditions and thermal stress condition (in solid form). Successful separation of drug from degradants was achieved on a C18 column using water–acetonitrile (25:75 v/v) as the mobile phase. Other high-performance liquid chromatography (HPLC) parameters were: flow rate, 1 mL min−1; detection wavelength, 286 nm; column temperature, 25 °C; and injection volume, 20 μL. The method was validated for linearity, precision, accuracy, robustness, and specificity and was stability-indicating one, based on the specificity studies. The drug degraded under acidic, basic, and oxidative hydrolytic stress while it was relatively stable towards neutral hydrolysis and thermal stress. The stressed samples were subjected to LC–MS/MS analysis. On the basis of spectral data, the structures of four degradation products and one interaction product were suggested. Degradation products were characterized to be isopropyl acetate, 2-[4-(4-chlorobenzoyl)phenoxy]-2-methyl propanoic acid, 4-hydroxy benzoic acid, and benzoic acid. The structure of one interaction product was proposed as methyl 2-[4-(4-chlorobenzoyl)phenoxy]-2-methylpropanoate.

Open access

Abstract  

There is a thin layer of organic lubricant on commercial silver (Ag) flakes that are widely used as the fillers in electrically conductive adhesives (ECAs). This lubricant layer highly affects the properties such as conductivity of the ECAs. Therefore, understanding the behavior of Ag flake lubricant layer is essential for developing high performance ECAs. This work is aimed at studying the chemical nature of the lubricant layer, interaction between the lubricant layer and Ag flakes, and thermal behavior of the lubricants during heating. A blank Ag powder is ball-milled into Ag flakes with five fatty acids that have different carbon–hydrogen chain length as lubricants. After lubrication, the Ag flakes are studied using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetry (TG), and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). It is found that (i) Ag flakes lubricated with fatty acids of different chain lengths have exothermic DSC peaks and mass losses at different temperatures, (ii) the lubricant layer on the lubricated Ag flake surfaces is a salt formed between the acid and Ag, and (iii) exothermic DSC peaks (in air) of a lubricated Ag flake is probably due to the oxidation of lubricant layer on the Ag flake surface.

Restricted access

Abstract  

Solid-state Ln(L)3 compounds, where Ln stands for trivalent Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y and L is 2-methoxybenzoate have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results provided information on the composition, dehydration, coordination mode, structure, thermal behaviour and thermal decomposition.

Restricted access

Abstract  

The thiourea complexes of antimony and bismuth triiodide were synthesized by a direct reaction of antimony and bismuth triiodide with thiourea powder at room temperature. The formula of the complex is MI3[SC(NH2)2]3(M=Sb, Bi). The crystal structure of the complexes belongs to monoclinic system and the lattice parameters are a=1.4772 nm, b=1.6582 nm, c=2.0674 nm and β=90.81 for SbI3(SC(NH2)2)3 and a=1.4009 nm, b=2.0170 nm, c=2.0397 nm and β=90.84 for BiI3[SC(NH2)2]3. The infrared spectra reveal that the trivalent antimony or bismuth ion is coordinated by the nitrogen atom, not the sulfur atom of the thiourea. Thermal analysis shows that there are two times structure rearrangements or phase transformation in the complexes from 100 to 170C.

Restricted access

Abstract  

The Modulated Differential Scanning Calorimeter (MDSC) technique, using TA Q1000 instrument, has been applied as a tool to study the reversible and non-reversible heat flow characteristics of a wide range of polyethylenes. It was found that the heat flow characteristic is dependent upon the heating rates and modulation period used in the test. By using a set of standard test conditions, MDSC was found to be useful in studying the effect of previous thermal processing conditions, additive effects, and also the density, MI, type of comonomer, and molecular architecture.

Restricted access