Search Results

You are looking at 1 - 1 of 1 items for :

  • "equilibrium theory" x
  • Chemistry and Chemical Engineering x
  • Refine by Access: All Content x
Clear All

Mass spectra of gliclazide drug at various ion sources temperature

Its thermal behavior and molecular orbital calculations

Journal of Thermal Analysis and Calorimetry
M. Zayed
F. Nour El-Dien
M. Hawash
, and
M. Fahmey


Gliclazide (GL, C15H21N3O3S) drug is used as non-insulin-dependant diabetes mellitus. The drug was investigated using thermal analysis (TA) measurements (TG/DTG) and electron impact mass spectral (EI–MS) fragmentation at 70 eV techniques. The mass spectra of GL at different values of ion source temperatures (400, 416, 425, and 440 K) are recorded and investigated. Semiempirical MO calculation, using PM3 procedure, has been carried out on neutral molecule and positively charged species. These calculations included bond length, bond order, bond strain, partial charge distribution, ionization energy, and heats of formation (ΔH f). PM3 procedure provides a basis for fine distinction among sites of initial bond cleavage, which is crucial to the rationalization of subsequent fragmentation of the molecule. The primary fragmentation pathway in both TA and MS (at different values of ion source temperature) is initiated by S–N bond rupture. TA and DTG show one main weight loss at 250.38 °C and four peaks at 271.6, 360.99, 427.93 and 479.17 °C in DTA, which may be attributed to various fragments. Also, the rate constant (K′) of thermal degradation has been tested isothermally at 210 and 600 °C. The calculated rate values are 9.6 × 10−3 and 0.33 × 10−3 s−1, respectively, and discussed. In MS, the effect of ion source temperature on mass spectral fragmentation processes is discussed on the basis of energy considerations using quasi equilibrium theory.

Restricted access