Search Results

You are looking at 1 - 10 of 102 items for :

• "monotonicity"
• Mathematics and Statistics
• Refine by Access: All Content
Clear All

On the Lipschitz perturbation of monotonic functions

Acta Mathematica Hungarica
Authors: Zita Makó and Zsolt Páles

Summary

A real valued function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $f$ \end{document} defined on a real interval \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $I$ \end{document} is called \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $d$ \end{document} -Lipschitz if it satisfies \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $|\ell(x)- \ell(y)| \le d(x,y)$ \end{document} for \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\ x,y\in I$ \end{document}. In this paper, we investigate when a function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p: I \to \mathbb{R}$ \end{document} can be decomposed in the form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p=q+ \ell$ \end{document}, where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $q$ \end{document} is increasing and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\ell$ \end{document} is \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $d$ \end{document}-Lipschitz. In the general case when \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $d: I^{2} \to \mathbb{R}$ \end{document} is an arbitrary semimetric, a function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p: I \to \mathbb{R}$ \end{document} can be written in the form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p=q+ \ell$ \end{document} if and only if
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum_{i=1}^{n}{\big(p(s_{i})-p(t_{i})-d(t_{i},s_{i}) \big)^{+}} \le \sum_{j=1}^{m}{\big(p(v_{j})-p(u_{j})+d(u_{j},v_{j}) \big)}$$ \end{document}
is fulfilled for all real numbers \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $t_{1}<s_{1}, \dots, t_{n}<s_{n}$ \end{document} and \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $u_{1}<v_{1}, \dots, u_{m}<v_{m}$ \end{document} in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $I$ \end{document} satisfying the condition
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\sum_{i=1}^{n} 1_{\left]t_i,s_i\right]}= \sum_{j=1}^{m} 1_{\left]u_j,v_j\right]},$$ \end{document}
where \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $1_{\left]a,b\right]}$ \end{document} denotes the characteristic function of the interval \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\left]a,b\right]$ \end{document}. In the particular case when \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $d: I^{2} \to R$ \end{document} is a so-called concave semimetric, a function \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p: I \to \mathbb{R}$ \end{document} is of the form \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $p=q+ \ell$ \end{document} if and only if
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$0 \le \sum_{k=1}^{n}{d(x_{2k-1},x_{2k})} + d(x_0,x_{2n+1}) + \sum_{k=0}^{n}{\big(p(x_{2k+1})-p(x_{2k})\big)}$$ \end{document}
holds for all \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $x_0\le x_1< \cdots< x_{2n}\le x_{2n+1}$ \end{document} in \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $I$ \end{document}.
Restricted access

Monotonic solutions of some singular integral equations of Volterra type

Studia Scientiarum Mathematicarum Hungarica
Authors: Mahmoud Borai, Wagdy El-Sayed, and Mohammed Abbas

Banás, J. and Martinón, A. , On monotonic solutions of a quadratic integral equation of Volterra type, Comput. Math. App. , 47 (2004), no. 2–3, 271–279. MR 2005b :45002 Martinón A

Restricted access

L 1-approximation rate of certain trigonometric series

Acta Mathematica Hungarica
Authors: R. J. Le and S. P. Zhou

. 25 19 – 25 (in Chinese).  Zhou , S. P. 2010 What condition can correctly generalize monotonicity in L 1 -convergence of sine series

Restricted access

Weakly linearly lindelöf monotonically normal spaces are lindelöf

Studia Scientiarum Mathematicarum Hungarica
Authors: István Juhász, Vladimir V. Tkachuk, and Richard G. Wilson

. , General Topology , Heldermann Verlag , Berlin , 1989 .  Gartside , P. M. , Cardinal invariants of monotonically normal

Restricted access

A broader context for monotonically monolithic spaces

Acta Mathematica Hungarica
Authors: O. Alas, V. Tkachuk, and R. Wilson

Abstract

This is a sequel of the work done on (strongly) monotonically monolithic spaces and their generalizations. We introduce the notion of monotonically κ-monolithic space for any infinite cardinal κ and present the relevant results. We show, among other things, that any σ-product of monotonically κ-monolithic spaces is monotonically κ-monolithic for any infinite cardinal κ; besides, it is consistent that any strongly monotonically ω-monolithic space with caliber ω 1 is second countable. We also study (strong) monotone κ-monolithicity in linearly ordered spaces and subspaces of ordinals.

Restricted access

Monotonicity properties of operations on generalized topologies

Acta Mathematica Hungarica
Author: Ákos Császár

Summary In the paper , several operations on generalized topologies are considered. They are not monotone in general, but an old result on monotonicity may be sharpened.

Restricted access

A note on monotonically normal spaces

Acta Mathematica Hungarica
Authors: Y. Gao, H. Qu, and S. Wang

Abstract

We show that a monotonically normal space X is paracompact if and only if for every increasing open cover {U α: α < κ} of X, there is a closed cover {F : n < ω, α < κ} of X such that F U α for n < ω, α < κ and F F if αβ.

Restricted access

A monotonicity property of Riemann’s xi function and a reformulation of the Riemann hypothesis

Periodica Mathematica Hungarica
Authors: Jonathan Sondow and Cristian Dumitrescu

Abstract

We prove that Riemann’s xi function is strictly increasing (respectively, strictly decreasing) in modulus along every horizontal half-line in any zero-free, open right (respectively, left) half-plane. A corollary is a reformulation of the Riemann Hypothesis.

Restricted access

A generalization of the monotonicity condition and applications

Acta Mathematica Hungarica
Authors: D. Yu and S. Zhou

Abstract

We introduce a new class of sequences called NBVS to generalize GBVS, essentially extending monotonicity from “one sided” to “two sided”, while some important classical results keep true.

Restricted access

Weak Solutions for Obstacle Problems with Weak Monotonicity

Studia Scientiarum Mathematicarum Hungarica
Authors: Farah Balaadich and Elhoussine Azroul

. Azroul and F . Balaadich . On strongly quasilinear elliptic systems with weak monotonicity . J. Appl. Anal ., ( 2021 ). 10.1515/jaa-2020-2041  F . Balaadich and E . Azroul . Elliptic Systems of p -Laplacian Type . Tamkang Journal of

Restricted access