Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: X. Zhu x
  • User-accessible content x
Clear All Modify Search

An efficient and sensitive analytical method based on precolumn derivatization and gas chromatography—mass spectrometry—selected ion monitoring (GC—MS—SIM) was proposed and validated for analysis of two cembrenediols (CBDs) which are α-cembrenediol and β-cembrenediol in tobacco samples. CBDs in tobacco samples were extracted by sonication with 50 mL dichloromethane for 10 min before derivatized with 2:3 (v/v) bis(trimethylsilyl)trifluoroacetamide (BSTFA)—pyridine at 20 °C for 100 min. CBDs’ level in tobacco samples was analyzed by GC—MS—SIM and quantified by the internal standard method. The linear range for α-CBD and β-CBD was 13.6–554.6 μg mL−1 and 4.11–162.6 μg mL−1, and the correlation coefficients of both were 0.9998. The limit of detection (LOD) and limit of quantification (LOQ) of α-cembrenediol and β-cembrenediol were 0.40 μg g−1 and 1.34 μg g−1, and 0.27 μg g−1 and 0.90 μg g−1, respectively. Average recoveries of α-CBD and β-CBD were 94.4–99.9% and 91.9–98.2% while the relative standard deviations (RSDs, n = 5) were ranged from 2.67 to 5.6% and 2.04 to 4.22%, respectively. This proposed analytical method has been successfully applied to analyze CBDs in tobacco samples.

Open access

A rapid and sensitive method for the identification and quantification of phillyrin (POG) in Forsythia suspense is described. The phillyrin standard solution was directly infused into the ion trap mass spectrometers (IT-MS) for collecting the MSn spectra. The electrospray ionization (ESI) mass spectral fragmentation pathway of phillyrin was proposed, and the ESI-MSn fragmentation behavior of phillyrin was deduced in detail. The major product ion at m/z 355 belongs to furofuran, which was formed by loss the glucopyranoside (180 Da), and the characteristic fragment ions m/z 473, 395, 337, 309, and 249 were observed. The loss of 18 Da could arise from two different fragmentation pathways, and the observed ion was composed of a mixture of two different structural ions. Quantification of phillyrin was assigned in positive-ion mode at a product ion at m/z 557 → 355 by liquid chromatography-mass spectrometry (LC-MS). The LC-MS method was validated for linearity, sensitivity, accuracy, and precision and then used to determine the content of the phillyrin. Lastly, the LC-MS method was successfully applied to determine phillyrin in real sample F. suspense and three of its medicinal preparations in the positive mode at the first time.

Open access