Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Dong Zhang x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

Objective

This study sought to investigate brain responses to positive and negative events in individuals with internet gaming disorder (IGD) during real gaming as a direct assessment of the neural features of IGD. This investigation reflects the neural deficits in individuals with IGD while playing games, providing direct and effective targets for prevention and treatment of IGD.

Methods

Thirty subjects with IGD and fifty-two matched recreational game use (RGU) subjects were scanned while playing an online game. Abnormal brain activities during positive and negative events were detected using a general linear model. Functional connectivity (FC) and correlation analyses between neural features and addiction severity were conducted to provide additional support for the underlying neural features.

Results

Compared to the RGU subjects, the IGD subjects exhibited decreased activation in the dorsolateral prefrontal cortex (DLPFC) during positive events and decreased activation in the middle frontal gyrus (MFG), precentral gyrus and postcentral gyrus during negative events. Decreased FC between the DLPFC and putamen during positive events and between the MFG and amygdala during negative events were observed among the IGD subjects. Neural features and addiction severity were significantly correlated.

Conclusions

Individuals with IGD exhibited deficits in regulating game craving, maladaptive habitual gaming behaviors and negative emotions when experiencing positive and negative events during real game-playing compared to RGU gamers. These abnormalities in neural substrates during real gaming provide direct evidence for explaining why individuals with IGD uncontrollably and continuously engage in game playing, despite negative consequences.

Open access

Abstract

Nattokinase (NK) is effective in the prevention and treatment of cardiovascular disease. Cucumber is rich in nutrients with low sugar content and is safe for consumption. The aim of this study was to construct a therapeutic cucumber that can express NK, which can prevent and alleviate cardiovascular diseases by consumption. Because the Bitter fruit (Bt) gene contributes to bitter taste but has no obvious effect on the growth and development of cucumber, so the NK-producing cucumber was constructed by replacing the Bt gene with NK by using CRISPR/Cas9. The pZHY988-Cas9-sgRNA and pX6-LHA-U6-NK-T-RHA vectors were constructed and transformed into Agrobacterium tumefaciens EHA105, which was transformed into cucumber by floral dip method. The crude extract of NK-producing cucumber had significant thrombolytic activity in vitro. In addition, treatment with the crude extract significantly delayed thrombus tail appearance, and the thrombin time of mice was much longer than that of normal mice. The degrees of coagulation and blood viscosity as well as hemorheological properties improved significantly after crude extract treatment. These findings show that NK-producing cucumber can effectively alleviate thrombosis and improve blood biochemical parameters, providing a new direction for diet therapy against cardiovascular diseases.

Open access