Search Results

You are looking at 11 - 15 of 15 items for :

  • Author or Editor: Y. Chen x
  • Chemistry and Chemical Engineering x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

High-performance liquid chromatography with a hydrophilic-interaction liquid chromatographic (HILIC) column has been successfully used to retain and separate the polar phosphonic herbicides glyphosate and glufosinate. Online electrospray tandem ion-trap mass spectrometric and DAD detection were used. The effects on the separation of mobile phase acetonitrile content, buffer concentration, and flow rate, and of column temperature, were investigated. With UV-visible detection at 195 nm, LOQ were <850 mg kg−1, showing the method is suitable for product quality control of these herbicides alone or in combination. Tandem mass spectrometric conditions were optimized for ion-trap detection. Quantification was by use of selected reaction monitoring transitions m/z 168 → 150 in negative-ion mode for glyphosate and m/z 182 → 136 in positive-ion mode for glufosinate. Limits of detection (LOD; S/N > 3) were 0.20 and 0.16 ng for glyphosate and glufosinate, respectively, and the respective limits of quantification (LOQ; S/N = 10) were 0.02 and 0.05 mg kg−1. Sample derivatization was not necessary to achieve low detection limits in residue analysis in this study. Recovery from watermelon, spinach, potato, tomato, radish-root, and water fortified with the herbicides ranged from 63.6 to 107.3% and relative standard deviations were <15.3%.

Full access

An efficient and sensitive analytical method based on precolumn derivatization and gas chromatography—mass spectrometry—selected ion monitoring (GC—MS—SIM) was proposed and validated for analysis of two cembrenediols (CBDs) which are α-cembrenediol and β-cembrenediol in tobacco samples. CBDs in tobacco samples were extracted by sonication with 50 mL dichloromethane for 10 min before derivatized with 2:3 (v/v) bis(trimethylsilyl)trifluoroacetamide (BSTFA)—pyridine at 20 °C for 100 min. CBDs’ level in tobacco samples was analyzed by GC—MS—SIM and quantified by the internal standard method. The linear range for α-CBD and β-CBD was 13.6–554.6 μg mL−1 and 4.11–162.6 μg mL−1, and the correlation coefficients of both were 0.9998. The limit of detection (LOD) and limit of quantification (LOQ) of α-cembrenediol and β-cembrenediol were 0.40 μg g−1 and 1.34 μg g−1, and 0.27 μg g−1 and 0.90 μg g−1, respectively. Average recoveries of α-CBD and β-CBD were 94.4–99.9% and 91.9–98.2% while the relative standard deviations (RSDs, n = 5) were ranged from 2.67 to 5.6% and 2.04 to 4.22%, respectively. This proposed analytical method has been successfully applied to analyze CBDs in tobacco samples.

Open access

Summary

A highly sensitive and reproducible isocratic liquid chromatographic method has been developed for the analysis of artemisinin and its three commonly used derivatives (artesunate, dihydroartemisinin, and artemether). The method involves a precolumn derivatization reaction with 4-carboxyl-2,6-dinitrobenzene diazonium ion to produce azo adducts that are UV-active. The critical parameters for the derivatization such as temperature, reaction time, and reagent concentrations were studied and optimized. The chromatographic separations were carried out on a C-18 column with mobile phase consisting of acetonitrile-0.1% acetic acid (60:40) at a flow rate of 1 mL min−1. UV detection was set at 254 nm. Dynamic linear calibration range was obtained at concentrations of artemisinins ranging from 0.26 to 1.44 μg mL−1. The low limits of detections of artemisinin, artesunate, dihydroartemisinin, and artemether were found to be 0.091, 0.0125, 0.0489, and 0.0128 ng μL−1, respectively. The developed methods were precise (RSD <3%) and accurate (% error < 5%). The developed methods may find application in dosage form analysis and pharmacokinetic studies.

Open access

High-performance liquid chromatography-mass spectrometry (HPLC-MS) method coupled with radical reaction for screening active ingredients from perennial fujimoto bean whole herb was established. The active ingredients, present in perennial fujimoto bean whole herb, possess scavenging effects towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, superoxide, peroxy radical, and hydroxyl radical. The radical scavenging abilities of these active ingredients were evaluated based on the relative peak areas in the HPLC chromatogram. The results indicate that potent antioxidants are present in the anhydrous methanol extract of perennial fujimoto bean whole herb. Based on HPLC-MS analysis, it was found that the scavenging ability can be mostly attributed to the presence of three compounds: cyanidin-3-o-β-d-glucopyranoside, troxerutin, and rutin. The structures were identified based on the MS and nuclear magnetic resonance (NMR) data. Free radical scavenging activity decreased in the following order: troxerutin > rutin > cyanidin-3-o-β-d-glucopyranoside.

Open access