Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Á Koller x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Abstract

By now, there is no doubt that regular physical exercise has an overall beneficial effect on each organ of the body. However, the effects of highly competitive sports (HCS) are more complex, as they exert greater demands on the cardiovascular and metabolic systems, among others. Strength, athletic, and aesthetic sport types each has a different exercise intensity and nutritional loading, as well as a different prevalence of cardiometabolic diseases at a later age. HCS athletes experience hypertension and mental stress during competitions and high nutritional loads between them. The post-career effects of this behaviour on the heart, arteries, cellular metabolism, and risk of obesity, are not well known and are not often the focus of research. In this review, we aimed to summarize the post-career effects of HCS. Based on data in the literature, we propose that athletes involved in highly competitive strength sports progressively develop metabolic syndrome and sustained elevated blood pressure.

Open access
Physiology International
Authors:
M. Michalis
,
K.J. Finn
,
R. Podstawski
,
S. Gabnai
,
Á. Koller
,
A. Cziráki
,
M. Szántó
,
Z. Alföldi
, and
F. Ihász

Abstract

Within recent years the popularity of sportive activities amongst older people, particularly competitive activities within certain age groups has increased. The purpose of this study was to assess the differences in the cardiorespiratory output at anaerobic threshold and at maximal power, output during an incremental exercise, among senior and young athletes. Ten elderly male subjects [mean (SD) age: 68.45 ± 9.32 years] and eight young male subjects [mean (SD) age: 25.87 ± 5.87 years] performed an incremental exercise test on a treadmill ergometer. No significant differences in body size were evident; however, the differences between the groups for peak power (451.62 ± 49 vs. 172.4 ± 32.2 W), aerobic capacity (57.97 ± 7.5 vs. 40.36 ± 8.6 mL kg−1 min−1), maximal heart rate (190.87 ± 9.2 vs. 158.5 ± 9.1 beats min−1), peak blood lactate (11 ± 1.7 vs. 7.3 ± 1.4 mmol L−1), and % VO2max at ventilatory thresholds (93.18 ± 4.3 vs. 79.29 ± 9.9%) were significantly lower in the senior athletes. The power output at anaerobic threshold was also higher (392 ± 48 vs. 151 ± 23 W) in the young athletes, explaining the significant difference in terms of performance between these groups. We have observed an evident deterioration in some of the cardiovascular parameters; however, the submaximal exercise economy seems to be preserved with aging. Exercise economy (i.e. metabolic cost of sustained submaximal exercise) was not different considerably with age in endurance-trained adults.

Open access