Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: B. Li x
  • Chemistry and Chemical Engineering x
  • Refine by Access: Content accessible to me x
Clear All Modify Search


A rapid and sensitive method for the identification and quantification of yohimbine in Pausinystalia yohimbe is described. The method used is liquid chromatography-quadrupole ion trap mass spectrometry (LC-QIT/MS). The yohimbine standard solution was directly infused into the ion trap mass spectrometers (IT/MS) for collecting the MSn spectra. The major fragment ions of yohimbine were confirmed by MSn at m/z 355, 224, 212, and 144, in the positive-ion mode. The possible main fragment ion cleavage pathway was studied. Yohimbine provided good signals corresponding to the protonated molecular ion [M + H]+. The method is reliable and reproducible, and the detection limit is 0.1 ng mL-1. The method was validated in the concentration range 0.1–50 μg mL−1; the intra- and interday precision ranged from 1.36% to 2.73% and the accuracy was 96.5–108.2%. The mean recovery of yohimbine was 97.1–101% with a relative standard deviation (RSD) <1.93%. The LC-IT/MS method was successfully applied to determine the yohimbine in P. yohimbe.

Full access

The use of polypropylene materials in industry for food packaging is increasing. The presence of additives in the polymer matrix enables the modification or improvement of the properties and performance of the polymer, but these additives are potential risk for human health. In this context, an efficient analytical method for the quantitative determination of three antioxidants (2,6-di-tert-butyl-4-methylphenol (BHT), dibutylhydroxyphenylpropionic acid stearyl ester (Irganox 1076), and tns-(2.4-di-tert-butyl)-phosphite (Irgafos 168)) and five ultraviolet stabilizers (2-(2′-hydroxy-5′-methylphenyl) (UV-P), (2′-hydroxy-3′-tert-5′-methylphenyl)-5-chloroben zotriazole (UV-326), 2-(2′-hydroxy-3′,5′-di-tert-butylphenyl)-5-chlorobenzotriazole (UV-327), 2-(2H-benzotriazol- 2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol(UV-329), and 2-hydroxy-4(octyloxy) benzophenone (UV-531)) in polypropylene food packaging and food simulants by high-performance liquid chromatography (HPLC) has been developed. Parameters affecting the efficiency in the process such as extraction and chromatographic condition were studied in order to determine operating conditions. The analytical method showed good linearity, presenting correlation coefficients (R ≥ 0.9977) for all additives. The limits of detection and quantification were between 0.03 and 0.30 μg mL−1 and between 0.10 and 1.00 μg mL−1 for eight analytes, respectively. Average spiked recoveries in blank polypropylene packaging and food simulants were in the range of 80.4–99.5% and 75.2–106.7%, with relative standard deviations in the range of 0.9–9.1% and 0.2–9.8%. Dissolving the polypropylene food packaging with toluene and precipitating by methanol was demonstrated more effective than ultrasonic extract with acetonitrile or dichloromethane for extracting the additives. The method was successfully applied to commercial polypropylene packaging determination, Irgafos 168 and UV-P were frequently found in six commercial polypropylene films, and the content ranged from 166.47 ± 5.11 to 845.27 ± 29.31 μg g−1 and 2.10 ± 0.29 to 19.23 ± 1.26 μg g−1, respectively.

Open access

An efficient and sensitive analytical method based on precolumn derivatization and gas chromatography—mass spectrometry—selected ion monitoring (GC—MS—SIM) was proposed and validated for analysis of two cembrenediols (CBDs) which are α-cembrenediol and β-cembrenediol in tobacco samples. CBDs in tobacco samples were extracted by sonication with 50 mL dichloromethane for 10 min before derivatized with 2:3 (v/v) bis(trimethylsilyl)trifluoroacetamide (BSTFA)—pyridine at 20 °C for 100 min. CBDs’ level in tobacco samples was analyzed by GC—MS—SIM and quantified by the internal standard method. The linear range for α-CBD and β-CBD was 13.6–554.6 μg mL−1 and 4.11–162.6 μg mL−1, and the correlation coefficients of both were 0.9998. The limit of detection (LOD) and limit of quantification (LOQ) of α-cembrenediol and β-cembrenediol were 0.40 μg g−1 and 1.34 μg g−1, and 0.27 μg g−1 and 0.90 μg g−1, respectively. Average recoveries of α-CBD and β-CBD were 94.4–99.9% and 91.9–98.2% while the relative standard deviations (RSDs, n = 5) were ranged from 2.67 to 5.6% and 2.04 to 4.22%, respectively. This proposed analytical method has been successfully applied to analyze CBDs in tobacco samples.

Open access