Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: C. Singh x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

The objective of this study was to develop and validate an assay method for simultaneous determination of atenolol, furosemide, losartan, and spironolactone in pharmaceutical formulations. A reverse-phase high-performance liquid chromatography procedure was developed, using a Kinetex® C-18 column (100 mm × 4.6 mm, 2.6 μm). The mobile phase was composed of methanol—water (75:25 v/v, pH 3.0, adjusted with phosphoric acid), with a flow rate of 0.4 mL min−1. All drugs were separated in less than 5 min. The method was validated according to International Conference on Harmonization (ICH) and Association of Official Analytical Chemists (AOAC) guidelines. The method showed linearity in a concentration range of 0.75–12.0 μg mL−1 for atenolol (r = 0.9995), 0.30–12.00 μg mL−1 for furosemide (r = 0.9997), 0.45–12.00 μg mL−1 for losartan (r = 0.9995), and 0.45–12.0 μg mL−1 for spironolactone (r = 0.9999). The method also showed repeatability and precision. The three-day average intra-day precisions were 101.35 ± 0.74% for atenolol, 95.84 ± 1.44% for furosemide, 98.90 ± 1.16% for losartan, and 97.19 ± 0.18% for spironolactone. Similarly, the inter-day precisions were 101.34 ± 0.72% for atenolol, 95.84 ± 0.1.50% for furosemide, 98.90 ± 1.17% for losartan, and 97.19 ± 0.83% for spironolactone. The method accuracy was also tested and validated — in this case, the average recovery values were 100.18 ± 1.20% for atenolol, 99.83 ± 1.54% for furosemide, 100.07 ± 0.95% for losartan, and 99.94 ± 0.93% for spironolactone. Finally, the method was successfully applied in the simultaneous determination of atenolol, furosemide, losartan, and spironolactone in magisterial formulas, as well as in commercial pharmaceutical formulations.

Open access

The present study aimed to develop and validate an analytical method for determination of marbofloxacin (MAR) in veterinary chewable tablets. The isocratic reversed-phase chromatographic method was developed and validated using a Vertisep®, RP C18 column (150 mm × 4.6 mm, 5.0 μm). The mobile phase was composed of water–acetonitrile (55:45, v/v) with pH adjusted to 3.0 with ortho-phosphoric acid and a flow rate set at 0.4 mL/min. The proposed method was validated for linearity in a concentration range of 2.5 to 17.5 μg/mL with a correlation coefficient of 0.99991. The mean content of MAR found in chewable tablets was 104.40% with RSD below 2%. The accuracy expressed as average recovery of the proposed method was 98.74%, and the precision expressed as relative standard deviation among repeated analysis was 0.55%. The method has adequate sensitivity with detection and quantitation limits of 0.25 and 0.81 μg/mL, respectively. Based on the presented results and according to the ICH and AOAC guidelines on validation of analytical methods, the proposed method was considered precise, accurate with adequate sensitivity, and robust in the MAR quantitative analysis. Therefore, the method can be used in the quality control of chewable veterinary tablets containing MAR.

Open access
Acta Chromatographica
Authors: Azazahemad A. Kureshi, Chirag Dholakiya, Tabaruk Hussain, Amit Mirgal, Siddhesh P. Salvi, Pritam C. Barua, Madhumita Talukdar, C. Beena, Ashish Kar, T. John Zachariah, Premlata Kumari, Tushar Dhanani, Raghuraj Singh, and Satyanshu Kumar

Xanthones are well recognized as chemotaxonomic markers for the plants belonging to the genus Garcinia. Xanthones have many interesting pharmacological properties. Efficient extraction and rapid liquid chromatography methods are essentially required for qualitative and quantitative determination of xanthones in their natural sources. In the present investigation, fruit rinds extracts of 8 Garcinia species from India, were prepared with solvents of varying polarity. Identification and quantification of 3 xanthones, namely, α-mangostin, β-mangostin, and γ-mangostin in these extracts were carried out using a rapid and validated ultra-high-performance liquid chromatography–photodiode array detection (UHPLC–PDA) method at 254 nm. γ-Mangostin (3.97 ± 0.05 min) was first eluted, and it was followed by α-mangostin (4.68 ± 0.03 min) and β-mangostin (5.60 ± 0.04 min). The calibration curve for α-mangostin, β-mangostin, and γ- mangostin was linear in the concentration range 0.781–100 μg/mL. α-Mangostin was quantified in all 4 extracts of Garcinia mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 10.36 ± 0.10, 4.88 ± 0.01, 3.98 ± 0.004, and 0.044 ± 0.002, respectively. However, the content of α-mangostin was below the limit of detection or limit of quantification in the extracts of other Garcinia species. Similarly, β-mangostin was quantified only in hexane (1.17 ± 0.01%), chloroform (0.39 ± 0.07%), and ethyl acetate (0.28 ± 0.03%) extracts of G. mangostana. γ-Mangostin was quantified in all 4 extracts of G. mangostana. Its content (%) in hexane, chloroform, ethyl acetate, and methanol extracts of G. mangostana was 0.84 ± 0.01, 1.04 ± 0.01, 0.63 ± 0.04, and 0.15 ± 0.01, respectively. γ-Mangostin was also quantified in hexane (0.09 ± 0.01), chloroform (0.05 ± 0.01), and ethyl acetate (0.03 ± 0.01) extracts of G. cowa, ethyl acetate extract of G. cambogia (0.02 ± 0.01), G. indica (0.03 ± 0.01), and G. loniceroides (0.07 ± 0.01). Similarly, γ-mangostin was quantified in 3 extracts of G. morella, namely, hexane (0.03 ± 0.01), chloroform (0.04 ± 0.01), and methanol (0.03 ± 0.01). In the case of G. xanthochymus, γ-mangostin was quantified in chloroform (0.03 ± 0.001) extract only. α-Mangostin and β-mangostin were not detected in any of 4 extracts of G. pedunculata.

Open access