Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: D. Liu x
  • Chemistry and Chemical Engineering x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Summary

A high-performance liquid chromatography (HPLC) method has been developed for simultaneous determination of six alkaloids, i.e., (−)-(R)-platydesmin, noroxyhydrastinine, berberine, skimmianine, canthin-6-one, and pteleine in the herbal medicine of Phellodendron amurense Rupr. The optimal condition for extraction and separation was achieved with a linear mobile phase gradient prepared from 0.1% phosphoric acid and acetonitrile. The LODs and LOQs for the analytes ranged from 0.06 to 0.22 μg mL−1 and from 0.25 to 0.80 μg mL−1, respectively. The optimized method was applied to the determination of alkaloids in P. amurense Rupr. and was found to be efficient. This method can provide a scientific and technical platform to the manufacturers for setting up a quality control standard as well as to the public for quality and safety assurance of the proprietary traditional Chinese medicines.

Full access

Summary

Radix Isatidis has widely useful activities including anti-virus, anti-bacterial. Tryptanthrin, indigo, and indirubin are active ingredients in R. Isatidis. Response surface methodology (RSM)-optimized infrared-assisted extraction (IRAE) was developed and combined with HPLC for simultaneous determination of tryptanthrin, indigo, and indirubin from R. Isatidis. IRAE were investigated through extraction yields of the three components and optimized by RSM. The optimum conditions were as follows: infrared power of 129 W, solid/liquid ratio of 1:40 g/mL, and irradiation time of 22.5 min. IRAE conditions obtained by RSM were not only accurate, but also had practical value reflecting the expected optimization. Subsequently, this novel IRAE method was evaluated by extraction yield of the components of R. Isatidis samples from different regions. Compared with common extraction methods including maceration extraction (ME), reflux extraction (RE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), IRAE showed higher yield with advantages of no limitation of solvent selection, low cost, convenience under optimum extraction conditions. These results suggested the potential of RSM-optimized IRAE for extraction and analysis of the water-/fat-soluble compositions of Chinese herbal medicine. A simple chromatographic separation for simultaneous determination of tryptanthrin, indigo, and indirubin from Chinese herbal medicine R. Isatidis was performed on a C18 column (Diamonsil 150 mm × 4.6 mm i.d., 5 μm) with a mobile phase isocratic consisting of methanol and water at a flow-rate of 0.8 mL min−1. The retention times of tryptanthrin, indigo, and indirubin were 15.4, 31.9, and 58.6 min, respectively. The linear equations were obtained as follows: y = −3094.5744 + 21208.792x for tryptanthrin (R = 0.9998, 0.9–18.0 μg mL−1), y = 4730.0448 + 30180.567x for indigo (R = 0.9997, 0.5–10.0 μg mL−1) and y = −6582.9045 + 67069.312x for indirubin (R = 0.9997, 0.4–8.0 μg mL−1). The result showed that RSM-optimized IRAE was a simple, efficient pretreatment method for the analysis of complex matrix.

Full access

Summary

Rapid high-performance liquid chromatographic methods with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization multistage mass spectrometry (HPLC-ESI-MSn) have been established and validated for simultaneous qualitative and quantitative analysis of eight steroidal saponins in ten batches of Gongxuening capsule (GXN), a widely commercially available traditional Chinese preparation. The optimum chromatographic conditions entailed use of a Kromasil C18 column with acetonitrile-water (30:70 to 62:38, υ/υ) as mobile phase at a flow rate of 1.0 mL min−1. The drift tube temperature of the ELSD was 102°C and the nebulizing gas flow rate was 2.8 L min−1. Separation was successfully achieved within 25 min. LC-ESI-MSn was used for unequivocal identification of the constituents of the samples by comparison with reference compounds. The assay was fully validated for precision, repeatability, accuracy, and stability, then successfully applied to quantification of the eight compounds in samples. The method could be effective for evaluation of the clinical safety and efficacy of GXN.

Full access

A method was developed for the preparative separation of two alkaloids from the crude extract of the radix of Rauvolfia verticillata (Lour.) Baill. in a single run. The two-phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (5:5:2:8, v/v), where triethylamine (40 mmol/L) was added to the upper organic phase as the stationary phase and hydrochloric acid (10 mmol/L) was added to the lower aqueous phase as the mobile phase, was selected for this separation by pH-zone-refining counter-current chromatography (PZRCCC). For the preparative separation, the apparatus was rotated at a speed 850 rpm, while the mobile phase was pumped into the column at 2 mL/min. As a result, 112 mg of reserpine and 21 mg of yohimbine were obtained from 3 g of crude extract in a single run. The analysis of the isolated compounds was determined by high-performance liquid chromatography (HPLC) at 230 nm with purities of over 91.0%, and the chemical identification was carried out by the data of electrospray ionization–mass spectrometry (ESI–MS) and nuclear magnetic resonance (NMR) spectroscopy. The technique introduced in this paper is an efficient method for preparative separation of reserpine and yohimbine from devil pepper radix. It will be beneficial to utilize medicinal materials and also useful for the separation, purification, and pharmacological study of Chinese herbal ingredients.

Open access

Citri Grandis Exocarpium (CGE) is a traditional Chinese medicine with a variety of biological activities. For efficient quality control of CGE, a simple, rapid, and accurate high-performance liquid chromatographic (HPLC) method was developed for simultaneous determination of four main compounds (naringin, rhoifolin, meranzin hydrate, and isoimperatorin) in this herb. These four compounds were separated on a C18 column by gradient elution with methanol and water. The flow rate was 1.0 mL·min−1, and the detection wavelength was 324 nm. The recoveries of the method ranged from 96.32% to 103.71%, and good linear relationships (r 2 > 0.9998) over relative wide concentration ranges were obtained. Then this validated method was successfully applied to the analysis of nine batches of CGE samples.

Open access

Compound danshen preparations (CDPs) are used clinically for the treatment of cardiovascular and cerebrovascular diseases. By using the quantitative analysis of multi-components by single-marker (QAMS) method, sixteen compounds (danshensu, protocatechuic acid, protocatechuicaldehyde, caffeic acid, rosmarinic acid, lithospermic acid, notoginsenoside R1, salvianolic acid B, ginsenoside Rg1, ginsenoside Re, salvianolic acid A, salvianolic acid C, ginsenoside Rb1, ginsenoside Rd, cryptotanshinone, and tanshinone IIA were quantified on an ACQUITY ultraperformance liquid chromatography (UPLC) HSS T3 column (2.1 × 100 mm, 1.8 μm) with the mobile phase consisting of 0.1% formic acid aqueous solution (A) and acetonitrile (B) using a gradient elution at the flow rate of 0.30 mL/min in 30 min at 30°C, which was also validated by UPLC-diode array detection (DAD) and UPLC-electrospray ionization multistage/mass spectrometry (ESI-MS/MS) for assuring the feasibility and accuracy. Tested by robustness experiment under slightly changeable conditions, the stability of relative correction factor (RCF) proved to be stable, with RSDs below 5.69%, except for notoginsenoside R1 with relative standard deviation (RSD) 7.83%. This reliable and convenient QAMS method resolved the problem of standard substance insufficiency and improved the quality assessment of preparations consisting of complex compounds with different chemical structures, such as CDPs.

Full access