Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: D. Yang x
- Chemistry and Chemical Engineering x
- Refine by Access: Content accessible to me x
Summary
The method of high-performance liquid chromatography (HPLC) with diode array detector (DAD) was used and validated for the simultaneous determination of nine flavonoids (rutin, myricetin, quercitrin, quercetin, luteolin, genistein, kaempferol, apigenin, and isorhamnetin) in beagle dog plasma. Plasma sample was pre-treated with acetonitrile (containing 0.05% formic acid). Chromatographic separation was performed on a kromasil C18 column (250 × 4.6 mm, 5 µm) maintained at 35 °C. The mobile phase was a mixture of methanol and 0.2% formic acid with a step linear gradient. At 1.0 mL min−1 flow rate, the eluent of other eight flavonoids was detected simultaneously at 360 nm with good separation except genistein (detected at 254 nm). Under optimum conditions, the correlation coefficient between the peak area and the concentrations for each analyte was all above 0.999. The intra-day and inter-day precisions were less than 10% for all analytes. The limit of detection and the limit of quantification for the selected nine flavonoids were 0.006–0.03 and 0.02–0.12 g mL−1, respectively. The extracted recoveries of selected nine flavonoids were 74.02%–99.37%. The assay has been successfully applied to determine concentrations of nine flavonoids in plasma from beagle dog after being intravenously administrated Ginkgo biloba extract.
Summary
Rapid high-performance liquid chromatographic methods with evaporative light scattering detection (HPLC-ELSD) and electrospray ionization multistage mass spectrometry (HPLC-ESI-MSn) have been established and validated for simultaneous qualitative and quantitative analysis of eight steroidal saponins in ten batches of Gongxuening capsule (GXN), a widely commercially available traditional Chinese preparation. The optimum chromatographic conditions entailed use of a Kromasil C18 column with acetonitrile-water (30:70 to 62:38, υ/υ) as mobile phase at a flow rate of 1.0 mL min−1. The drift tube temperature of the ELSD was 102°C and the nebulizing gas flow rate was 2.8 L min−1. Separation was successfully achieved within 25 min. LC-ESI-MSn was used for unequivocal identification of the constituents of the samples by comparison with reference compounds. The assay was fully validated for precision, repeatability, accuracy, and stability, then successfully applied to quantification of the eight compounds in samples. The method could be effective for evaluation of the clinical safety and efficacy of GXN.
Summary
A new HPLC method has been established for determination of 3-monoiodotyrosine (MIT), 3,5-diiodotyrosine (DIT), 3,5-diiodothyronine (T2), 3,3′,5-triiodothyronine (T3), 3,3′,5′-triiodothyronine (rT3), and thyroxine (T4) produced by hydrolysis of iodinated casein with barium hydroxide. The hydrolytic stability of each analyte was evaluated. Iodinated casein was hydrolyzed with saturated barium hydroxide solution for 16 h at 110°C and the barium ions were then removed as barium sulfate. Reversed-phase HPLC was performed on a 2.1 mm × 150 mm, 5 μm particle, C18 column with a mixture of acetonitrile and 0.1% (v/v) formic acid as mobile phase at a flow rate of 0.2 mL min–1. Acetonitrile was maintained at 5% (v/v) for 5 min and then increased linearly to 50% (v/v) within 35 min. All analytes were quantified by measuring the absorbance at 280 nm. Validation data indicated the method was linear, with regression coefficients (R 2) > 0.998, in the concentration ranges investigated. Sensitivity was adequate—limits of detection (LOD) were 0.04–0.38 μg mL–1 and limits of quantification (LOQ) were 0.05–0.38 μg mL–1. Accuracy and precision were acceptable — for all the analytes recovery was 82.0–93.0% and repeatability, as relative standard deviation, was 1.0–3.0%. Hydrolytic stability tests indicated MIT and DIT are much more stable than the other analytes. rT3 was not released directly from iodinated casein but was formed by deiodination of T4 during hydrolysis. The method could be used to identify iodinated casein, to evaluate its activity and quality, and for supervision and regulation of feed additives.
Summary
Chestnut exhibits anti-inflammatory, styptic, anti-diarrhea, and analgestic effects as a traditional Chinese medicine. There is increasing evidence that shows that the consumption of chestnuts has become more important in human nutrition due to the health benefits provided by the antioxidants. The phenolic compounds are responsible for major bioactivities, such as anti-tumor and anti-oxidation. A high-performance liquid chromatography (HPLC) method with diode array detection (DAD) was established for the simultaneous determination of six phenolic compounds (gallic acid, GA; protocatechuic acid, PR; catechin, CA; epicatechin, EP; quercetin, QU; kaempferol, KA) in Chinese chestnut (Castanea mollissima blume) kernel. The sample followed by separation on Eclipse XDB-C18 column (150 × 4.6 mm, id., 5 μm) with gradient elution of methanol-1.0% acetate acid solution as a mobile phase, at a temperature of 30°C, under the ratio of 1.2 mL min−1, with 5 μL injection volume, and multi-wavelength synthesis was used with DAD. The correlation coefficients were larger than 0.999, the recoveries were 97.58% for GA, 100.41% for PA, 96.23% for CA, 101.38% for QU, 99.15% for EP, and 98.60% for KA, relative standard deviation (RSD) were 1.04% for GA, 1.21% for PA, 1.09% for CA, 1.19% for QU, 1.06% for EP, and 1.20% for KA. This method was applied for the determination of phenolics in chestnut kernel and was found to be fast, sensitive, and suitable.
Bee pollen is a health food with a wide range of nutritional and therapeutic properties. However, the bioactive compounds of bee pollen have not been extensively revealed due to low efficacy in separation. High-speed counter-current chromatography (HSCCC) and solvent extraction were applied to separate tyrosinase inhibitors from camellia pollen in this study. The camellia pollen extracts prepared with petroleum ether, ethyl acetate, and n-BuOH have tyrosinase inhibitory activity. Acidic hydrolysis could promote the tyrosinase inhibitory activity of crude sample. Three fractions with tyrosinase inhibitory activity were separated from the hydrolysate by a one-step HSCCC procedure. Among the fractions, two chemicals were sufficiently purified and identified to be levulinic acid (LA) and 5-hydroxymethylfurfural (5-HMF). The recovery was 0.80 g kg−1 pollen for LA and 1.75 g kg−1 pollen for 5-HMF; and their purity was all over 98%. The study demonstrates that HSCCC method is powerful for preparative separation of tyrosinase inhibitors from camellia pollen.