Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Jeremy L. Steinbacher x
  • User-accessible content x
Clear All Modify Search

We present and validate simple mesofluidic devices for producing monodisperse droplets and materials. The significance of this work is a demonstration that simple and complex droplet formulations can be prepared uniformly using off-the-shelf small-diameter tubing, barbed tubing adapters, and needles. With these simple tools, multiple droplet-forming devices and a new particle concentrator were produced and validated. We demonstrate that the droplet-forming devices could produce low-dispersity particles from 25 to 1200 Km and that these results are similar to results from more complicated devices. Through a study of the fluid dynamics and a dimensional analysis of the data, we have correlated droplet size with two dimensionless groups, capillary number and viscosity ratio. The flowfocusing device is more sensitive to both parameters than the T-junction geometry. The modular character of our mesofluidic devices allowed us to rapidly assemble compound devices that use flow-focusing and T-junction devices in series to create complex droplet-in-microcapsule materials. This work demonstrates that flow chemistry does not require complicated tools, and an inexpensive tool-kit can allow anyone with interest to enter the field.

Open access