Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Monika Kovačević x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Central European Geology
Ana Brcković
Monika Kovačević
Marko Cvetković
Iva Kolenković Močilac
David Rukavina
, and
Bruno Saftić

Lithofacies definition in the subsurface is an important factor in modeling, regardless of the scale being at reservoir or basin level. In areas with low exploration level, modeling of lithofacies distribution presents a complicated task as very few inputs are available. For this purpose, a case study in the Požega Valley was selected with only one existing well and several seismic sections within an area covering roughly 850 km2. For the task of expanding the input data set for lithofacies modeling, neural network analysis was performed that incorporated interpreted lithofacies (sandstone, siltite, marl, and breccia-conglomerate) in a single well and attribute data gathered from a seismic section. Three types of different neural networks were used for the analysis: multilayer perceptron, radial-basis function, and probabilistic neural network. As a result, three lithofacies models were built alongside a seismic section based upon predictions acquired from the neural networks. Three lithofacies were successfully predicted on the section while the breccia-conglomerate was either missing or underpredicted and mostly positioned in a geologically invalid interval. Results obtained by single networks differed from one another, which indicated that a result from a single network should not be treated as representative; thus, the facies distribution for modeling should be acquired from either an ensemble of neural networks or several neural networks. Analysis showed the initial potential of the usability of neural networks and seismic attribute analysis on vintage seismic sections with possible drawbacks of the applications being pointed out.

Open access