Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: P. Bode x
  • User-accessible content x
Clear All Modify Search

Abstract  

The assumption that the shape of the epithermal neutron spectrum can be described, in any research reactor, by the 1/E 1+α function is a fundamental starting point of the k 0 standardization. This assumption may be questioned from a reactor physics viewpoint. The type of moderator, the existence of neutron reflectors, the additional production of (γ, n) neutrons and resonance capture by construction materials may be different for each reactor, with consequences for the shape of the neutron spectrum. This dependency may explain that various practitioners reported contradicting experiences with the use of Zr–Au flux monitors for the determination of the α-parameter. An objective view on the influence of the design of the reactor and irradiation facility on the shape of the neutron spectrum can be obtained by modeling. This has been applied in the Reactor Institute Delft for reactor configurations in which the irradiation facilities face the fuel elements with the presence of beryllium reflector elements. The Monte Carlo calculations indicate a distortion of the 1/E 1+α relationship at the higher energy edge of the epithermal neutron spectrum. This distortion is attributed to the formation and thermalisation of both photoneutrons and (n, 2n) produced fast neutrons in the beryllium, and has a direct impact on the resonance activation of 95Zr, other than represented by the 1/E 1+α function. The obtained relationship between neutron flux and neutron energy was also used for estimating the f-value and compared with the value obtained by the Delft Cr–Mo–Au flux monitor.

Open access

Abstract  

The CITATION code based on neutron diffusion theory is used for flux calculation inside voluminous sample in prompt gamma activation analysis with an isotopic neutron source (241Am-Be). The code used the specific parameters related to energy spectrum source, irradiation system materials (shielding, reflector, etc.), geometry and elemental composition of the sample. The flux distribution (thermal and fast) was calculated on three-dimensional geometry for the system: source, air, and polyethylene and water cylindrical sample of 125 liters. The thermal flux was calculated in series of points inside the sample, and agreed with the results obtained by measurements with good statistical uncertainty. The maximum thermal flux was measured at distance of 4.1 cm and calculated at 4.3 cm by the CITATION code. Beyond a depth of 7.2 cm, the ratio of thermal flux to fast flux increases up to twice and allows us the optimization of the detection system in the scope of in-situ PGNAA.

Open access