Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Ping Zhang x
  • Chemistry and Chemical Engineering x
  • Refine by Access: Content accessible to me x
Clear All Modify Search
Acta Chromatographica
Authors:
Zhaojun Sheng
,
Ruhan Ye
,
Siyuan Ge
,
Chenggang Wang
,
Xuetao Xu
,
Guangwen Zhang
, and
Ping Luo

An efficient and convenient reversed-phase high-performance liquid chromatography method has been developed and validated for the quantitative determination of cholic acid bulk drugs and their related impurities. Chromatographic separation was performed on a YMC-Pack ODS-AQ column (250 mm × 4.6 mm, S-5 μm, 12 nm), and the mobile phase consisted of acetonitrile, methanol, and diluted formic acid solution (pH 2.5) at a flow rate of 1.0 mL/min. The analytes were monitored using a refractive index detector at 30 °C, and the column temperature was 30 °C. Under the above chromatographic conditions, the method has good specificity and specified impurities can be effectively separated. The proposed method is found to have linearity in the 2.0–80.0 μg/mL concentration range with correlation coefficients of not less than 0.9999. The compounds analyzed in the solutions are stable for at least 7 days, and spike recoveries for all specified impurities range from 91.3% to 109.3% with relative standard deviations (RSDs) not more than 7.3%. The limit of detection and the limit of quantification for the analytes are 0.060 μg/mL and 2.0 μg/mL, respectively. The proposed method can be applied in the quality control assay of cholic acid bulk drugs, with the advantages of simplicity, accuracy, robustness, good selectivity, and high sensitivity.

Open access

A convenient method was developed for simultaneous determination of 11 preservatives in cosmetics and pharmaceuticals. Matrix solid-phase dispersion had been optimized as the sample pretreatment technology, using Florisil as a dispersant, anhydrous sodium sulfate as a dehydrant, formic acid as an additive, and n-hexane and ethyl acetate as eluents successively, and followed by gas chromatography–flame ionization detection on a TR-5 capillary column. Experimental results showed that 11 preservatives were baseline separated within 22 min. Good linearities were observed in the concentration range of 0.53–250 μg/mL for all analytes, and there were also minor differences. All correlation coefficients (r) were more than 0.995. The average recoveries at 3 levels of spiked samples ranged from 80% to 124% with 0.9–12% intra-day RSD and 1.8–12% inter-day RSD. The limits of detection were less than 0.18 μg/mL for all analytes. Besides, there was no obvious matrix effect on the analytes. The conclusion was that the developed method was simple, cheap, accurate, precise, and environment-friendly, in addition to existing little matrix effects. It could be recommended to determine 11 preservatives individually or in any their combinations to not only in liquid and gel cosmetics but also in liquid medicine and ointment.

Open access

A reliable isotope dilution method for the determination of chloramphenicol (CAP) in drinking water was developed by using an evaporation preparative step. Each sample was monitored by ultrahigh-pressure liquid chromatography (UHPLC) coupled to tandem mass spectrometry (MS/MS) using an electrospray ionization interface (ESI) in negative ion modes. Recoveries of spiked samples were in the range from 93.2% to 95.7% with intra-day relative standard deviation lower than 6.7% and inter-day relative standard deviation lower than 8.2%. Limit of quantification (LOD) was 0.002 ng/mL. The developed method was successfully applied to the analysis of CAP in drinking water of Shannan region of Tibet.

Open access
Journal of Thermal Analysis and Calorimetry
Authors:
Lin-Quan Liao
,
Hong-Jian Wei
,
Ji-Zhen Li
,
Xue-Zhong Fan
,
Ya Zheng
,
Yue-Ping Ji
,
Xiao-Long Fu
,
Ya-Jun Zhang
, and
Fang-Li Liu

Abstract

The compatibility of poly(3-nitromethyl-3-methyloxetane) (PNIMMO) with some energetic materials are studied by using pressure DSC method in detail. Cyclotetramethylenetetranitroamine (HMX), cyclotrimethylenetrinitramine (RDX), nitrocellulose (NC), nitroglycerine (NG), N-nitrodihydroxyethylaminedinitrate (DINA), and aluminum powder (Al) are used as common energetic materials, and 3,4-dinitrofurzanfuroxan (DNTF), 1,3,3-trinitroazetidine (TNAZ), hexanitrohexazaisowurtzitane (CL-20), 4,6-dinitro-5,7-diaminobenzenfuroxan (CL-14), 1,1-diamino-2,2-dinitroethylene (DADNE), and 4-amino-5-nitro-1,2,3-triazole (ANTZ) are used as new energetic materials. The results show that the binary systems of PNIMMO with HMX, RDX, NC, NG, DINA, Al, CL-14 and DADNE are compatible, with TNAZ, CL-20 and ANTZ are slightly sensitive, and with DNTF is sensitive.

Open access