Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Soraya Mousavi x
  • User-accessible content x
Clear All Modify Search
Authors: Soraya Mousavi, Stefan Bereswill and Markus M. Heimesaat

Humans have lost their vitamin C-synthesizing capacities during evolution. Therefore, the uptake of this essential compound from external sources is mandatory in order to prevent vitamin C-deficient conditions resulting in severe morbidities such as scurvy. The potent antioxidant, immunomodulatory, and antiinfectious effects of vitamin C are known since the 1930s. We here (i) review the impact of vitamin C on innate and adaptive immune functions, (ii) provide an overview of its antimicrobial, antibacterial, antiviral, antiparasitic, and antifungal properties, and finally, (iii) discuss vitamin C as an adjunct treatment option for the combat of human infections by bacteria, particularly by emerging multidrug-resistant species.

Open access


The physiological colonization resistance exerted by the murine gut microbiota prevents conventional mice from Campylobacter jejuni infection. In the present study we addressed whether this also held true for Campylobacter coli. Following peroral application, C. coli as opposed to C. jejuni could stably establish within the gastrointestinal tract of conventionally colonized mice until 3 weeks post-challenge. Neither before nor after either Campylobacter application any changes in the gut microbiota composition could be observed. C. coli, but not C. jejuni challenge was associated with pronounced regenerative, but not apoptotic responses in colonic epithelia. At day 21 following C. coli versus C. jejuni application mice exhibited higher numbers of adaptive immune cells including T-lymphocytes and regulatory T-cells in the colonic mucosa and lamina propria that were accompanied by higher large intestinal interferon-γ (IFN-γ) concentrations in the former versus the latter but comparable to naive levels. Campylobacter application resulted in decreased splenic IFN-γ, tumor necrosis factor-α (TNF-α), and IL-6 concentrations, whereas IL-12p70 secretion was increased in the spleens at day 21 following C. coli application only. In either Campylobacter cohort decreased IL-10 concentrations could be measured in splenic and serum samples. In conclusion, the commensal gut microbiota prevents mice from C. jejuni, but not C. coli infection.

Open access