Search Results

You are looking at 1 - 10 of 11 items for

  • Author or Editor: Y.X. Liu x
  • Refine by Access: Content accessible to me x
Clear All Modify Search

Summary

Radix Isatidis has widely useful activities including anti-virus, anti-bacterial. Tryptanthrin, indigo, and indirubin are active ingredients in R. Isatidis. Response surface methodology (RSM)-optimized infrared-assisted extraction (IRAE) was developed and combined with HPLC for simultaneous determination of tryptanthrin, indigo, and indirubin from R. Isatidis. IRAE were investigated through extraction yields of the three components and optimized by RSM. The optimum conditions were as follows: infrared power of 129 W, solid/liquid ratio of 1:40 g/mL, and irradiation time of 22.5 min. IRAE conditions obtained by RSM were not only accurate, but also had practical value reflecting the expected optimization. Subsequently, this novel IRAE method was evaluated by extraction yield of the components of R. Isatidis samples from different regions. Compared with common extraction methods including maceration extraction (ME), reflux extraction (RE), ultrasound-assisted extraction (UAE), and microwave-assisted extraction (MAE), IRAE showed higher yield with advantages of no limitation of solvent selection, low cost, convenience under optimum extraction conditions. These results suggested the potential of RSM-optimized IRAE for extraction and analysis of the water-/fat-soluble compositions of Chinese herbal medicine. A simple chromatographic separation for simultaneous determination of tryptanthrin, indigo, and indirubin from Chinese herbal medicine R. Isatidis was performed on a C18 column (Diamonsil 150 mm × 4.6 mm i.d., 5 μm) with a mobile phase isocratic consisting of methanol and water at a flow-rate of 0.8 mL min−1. The retention times of tryptanthrin, indigo, and indirubin were 15.4, 31.9, and 58.6 min, respectively. The linear equations were obtained as follows: y = −3094.5744 + 21208.792x for tryptanthrin (R = 0.9998, 0.9–18.0 μg mL−1), y = 4730.0448 + 30180.567x for indigo (R = 0.9997, 0.5–10.0 μg mL−1) and y = −6582.9045 + 67069.312x for indirubin (R = 0.9997, 0.4–8.0 μg mL−1). The result showed that RSM-optimized IRAE was a simple, efficient pretreatment method for the analysis of complex matrix.

Open access

This study aims to develop and validate a high-performance size-exclusion chromatography (HPSEC) method to determine the amount of polymer in cefmetazole sodium for injection and to compare this method with gel chromatography. A Zenix SEC-150 column was used with the mobile phase of phosphate buffer solution (pH 7.0; 0.01 M)—acetonitrile (90:10 v/v) at a flow rate of 0.8 mL min−1 and a detection wavelength of 240 nm. The polymer was quantified by an external standard method with self-control, and the amount was expressed by the percentage of cefmetazole. The HPSEC method was validated for specificity, linearity, and precision. The chromatographic conditions, chromatographic performances, sensitivity, linearity, and precision of the developed HPSEC method and gel chromatography were compared, and both methods were subsequently used to determine the amount of polymer from seven batches of samples. The HPSEC method was fully validated. The time of isocratic elution for sample assay was less than 14 min. The results of comparison indicate that the developed HPSEC method was superior to gel chromatography. The Student t test results also showed significant difference in the amount of polymer from the samples obtained by the two methods. Thus, the HPSEC method with two obvious advantages, the superior sensitivity and a shorter analysis time, is more suitable for determination of polymer amount in cefmetazole sodium for injection to control the quality of the product.

Open access

Molecularly imprinted polymers (MIPs) were synthesized by imprinting a new template—S(-)-1,1′-binaphthalene-2,2′-diamine (S-DABN) and applied as chiral stationary phases for chiral separation of DABN racemates by high-performance liquid chromatography (HPLC). The influence of some key factors on the chiral recognition ability of MIPs, such as the type of functional monomers and porogen and the molar ratio of template to monomer, was systematically investigated. The chromatographic conditions, such as mobile phase composition, sample loading, and flow rate, were also measured. The chiral separation for DABN racemates under the optimum chromatographic conditions by using MIP chiral stationary phase (CSP) of P3, prepared with the S-DABN/MAA ratio = 1/4 and used acetonitrile (2 mL) and chloroform (4 mL) as porogen, showed the highest separation factor (2.14). Frontal analysis was used to evaluate affinity to the target molecule of MIPs. The binding sites (B t) of MIPs and dissociation constant (K d) were estimated as 4.56 μmol g−1 and 1.40 mmol L−1, respectively. In comparison with the previous studies, this approach had the advantages, such as the higher separation factor, easy preparation, and cost-effectiveness, it not only has the value for research but also has a potential in industrial application.

Open access

Summary

Oroxylin A (5,7-dihydroxy-6-methoxyflavone), which has showed multiple pharmacological effects, was semi-synthesized chemically as a pharmaceutical agent. Its impurities, degradation products and their formation pathways remain unknown. In the present study, two impurities (5,6,7-trihydroxyflavone, 5-hydroxy-6,7-dimethoxytlavone) and a degradation product (5,7-dihydroxy-8-methoxyflavone) in Oroxylin A bulk drug substance were identified, and their formation pathways were proposed. A reversed phase liquid chromatographic method for the simultaneous determination of Oroxylin A and the three compounds was developed on a C18 column using methanol-acetonitrile-0.1% acetic acid (54:23:23, v/v/v) as the mobile phase. The detection was performed at 271 nm. The method was validated to be robust, precise, specific and linear between 4 and 40 μg mL−1; the limits of detection and quantification of Oroxylin A were 0.01 and 0.04 μg mL−1, respectively. The developed method was found to be suitable to check the quality of bulk samples of Oroxylin A at the time of batch release and also during its stability studies (long term and accelerated stability).

Open access

An efficient and sensitive analytical method based on precolumn derivatization and gas chromatography—mass spectrometry—selected ion monitoring (GC—MS—SIM) was proposed and validated for analysis of two cembrenediols (CBDs) which are α-cembrenediol and β-cembrenediol in tobacco samples. CBDs in tobacco samples were extracted by sonication with 50 mL dichloromethane for 10 min before derivatized with 2:3 (v/v) bis(trimethylsilyl)trifluoroacetamide (BSTFA)—pyridine at 20 °C for 100 min. CBDs’ level in tobacco samples was analyzed by GC—MS—SIM and quantified by the internal standard method. The linear range for α-CBD and β-CBD was 13.6–554.6 μg mL−1 and 4.11–162.6 μg mL−1, and the correlation coefficients of both were 0.9998. The limit of detection (LOD) and limit of quantification (LOQ) of α-cembrenediol and β-cembrenediol were 0.40 μg g−1 and 1.34 μg g−1, and 0.27 μg g−1 and 0.90 μg g−1, respectively. Average recoveries of α-CBD and β-CBD were 94.4–99.9% and 91.9–98.2% while the relative standard deviations (RSDs, n = 5) were ranged from 2.67 to 5.6% and 2.04 to 4.22%, respectively. This proposed analytical method has been successfully applied to analyze CBDs in tobacco samples.

Open access

A method was developed for the preparative separation of two alkaloids from the crude extract of the radix of Rauvolfia verticillata (Lour.) Baill. in a single run. The two-phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (5:5:2:8, v/v), where triethylamine (40 mmol/L) was added to the upper organic phase as the stationary phase and hydrochloric acid (10 mmol/L) was added to the lower aqueous phase as the mobile phase, was selected for this separation by pH-zone-refining counter-current chromatography (PZRCCC). For the preparative separation, the apparatus was rotated at a speed 850 rpm, while the mobile phase was pumped into the column at 2 mL/min. As a result, 112 mg of reserpine and 21 mg of yohimbine were obtained from 3 g of crude extract in a single run. The analysis of the isolated compounds was determined by high-performance liquid chromatography (HPLC) at 230 nm with purities of over 91.0%, and the chemical identification was carried out by the data of electrospray ionization–mass spectrometry (ESI–MS) and nuclear magnetic resonance (NMR) spectroscopy. The technique introduced in this paper is an efficient method for preparative separation of reserpine and yohimbine from devil pepper radix. It will be beneficial to utilize medicinal materials and also useful for the separation, purification, and pharmacological study of Chinese herbal ingredients.

Open access

Summary

10-O-(N,N-dimethylaminoethyl)-ginkgolide B (XQ-1) is an intermediate for synthesizing 10-O-(N,N-dimethylaminoethyl)-ginkgolide B methanesulfonate (XQ-1H), which is a novel ginkgolide B derivative and is being developed as a platelet-activating factor antagonist. A specific and rapid liquid chromatographic method was developed for the quantitative analysis of XQ-1 and its three related impurities, which were 10-O-(N,N-dimethylaminoethyl)-11,12-seco-ginkgolide B (imp-1), 10-O-(N,N-dimethylaminoethyl)-11,12-seco-3,14-dehydroginkgolide B (imp-2) and 10-O-(N,N-dimethylaminoethyl)-3,14-dehydroginkgolide B (imp-3) simultaneously in XQ-1 samples. Chromatographic separation was achieved on a CN band stationary phase, with the mobile phase consisting of methanol and 20 mM dipotassium hydrogen phosphate (pH 7.5) (50:50, υ/υ) in isocratic elution. The flow rate was 1.0 mL min−1 and detector was set at 220 nm. The method was optimized by the analysis of the samples generated during the forced degradation studies. The XQ-1, imp-1, imp-2, and imp-3 were completely separated within 15 min. The resolutions (R s) amongst four target compounds were >2. The developed method was validated with respect to specificity, linearity, accuracy, precision, and robustness. The results indicated that the simultaneous LC determination method was readily utilized as a quality control method for XQ-1 sample.

Open access

Summary

A preparative high-speed countercurrent chromatograph (HSCCC) method for the isolation and purification of C6-C2 natural alcohol and benzyl ethanol from Forsythia suspensa was successfully established. Cornoside, forsythenside F, forsythiaside, and acteoside were rapidly obtained for the first time by HSCCC with a two-phase solvent system ethyl acetate-n-butanol-methanol-water (5:1:0.5:5, υ/υ) in one-step separation. The purities of them were all above 97% as determined by high-performance liquid chromatography, and the combination of ESI-MS and NMR analysis confirmed the chemical structures of the four compounds.

Open access

Summary

A selective and sensitive liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method was developed and validated for analysis of xanthotoxol (1), xanthotoxin (2), isoimpinellin (3), bergapten (4), oxypeucedanin (5), imperatorin (6), cnidilin (7), and isoimperatorin (8) in rat bile and urine using pimpinellin as an internal standard (IS). An Agilent 1200 liquid chromatography system (Agilent Technologies, USA) equipped with a quaternary pump, an autosampler, and a column compartment was used for all analyses. Chromatographic separations were performed on a Sapphire C18 column (150 mm × 4.6 mm, 5 μm), and the column temperature was maintained at 30°C; the sample injection volume was 10 μL. The specificity, linearity, accuracy, precision, recovery, matrix effect, and several stabilities were validated for all analytes in the rat bile and urine samples. The method was successfully applied in monitoring the concentrations of eight coumarins in rat bile and urine after a single oral administration of Radix Angelicae Dahuricae extract with a dosage of 8.0 mL/kg. In the bile samples, the eight coumarins excreted completely in twenty-four hours. The average percentages of coumarins (1–8) excreted were 0.045%, 0.019%, 0.177%, 0.105%, 0.337%, 0.023%, 0.024%, 0.021%. In the urine samples, the eight coumarins excreted completely in seventy-two hours. The average percentages of coumarins (1–8) excreted were 1.78%, 0.095%, 0.130%, 0.292%, 0.082%, 0.008%, 0.005%, 0.004%. The method is robust and specific and it can successfully complete the requirements of the excretion study of the eight coumarins in Radix Angelicae Dahuricae.

Open access

Compound danshen preparations (CDPs) are used clinically for the treatment of cardiovascular and cerebrovascular diseases. By using the quantitative analysis of multi-components by single-marker (QAMS) method, sixteen compounds (danshensu, protocatechuic acid, protocatechuicaldehyde, caffeic acid, rosmarinic acid, lithospermic acid, notoginsenoside R1, salvianolic acid B, ginsenoside Rg1, ginsenoside Re, salvianolic acid A, salvianolic acid C, ginsenoside Rb1, ginsenoside Rd, cryptotanshinone, and tanshinone IIA were quantified on an ACQUITY ultraperformance liquid chromatography (UPLC) HSS T3 column (2.1 × 100 mm, 1.8 μm) with the mobile phase consisting of 0.1% formic acid aqueous solution (A) and acetonitrile (B) using a gradient elution at the flow rate of 0.30 mL/min in 30 min at 30°C, which was also validated by UPLC-diode array detection (DAD) and UPLC-electrospray ionization multistage/mass spectrometry (ESI-MS/MS) for assuring the feasibility and accuracy. Tested by robustness experiment under slightly changeable conditions, the stability of relative correction factor (RCF) proved to be stable, with RSDs below 5.69%, except for notoginsenoside R1 with relative standard deviation (RSD) 7.83%. This reliable and convenient QAMS method resolved the problem of standard substance insufficiency and improved the quality assessment of preparations consisting of complex compounds with different chemical structures, such as CDPs.

Open access