Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Márta Erdélyi x
  • Refine by Access: Content accessible to me x
Clear All Modify Search


The purpose of the present study was to investigate the effects of different dietary concentrations of ochratoxin A (OTA) on the growth, feed intake, mortality, blood plasma protein content and some parameters of lipid peroxidation and the glutathione redox system of pheasant chicks in a three-week long trial. A total of 320 seven-day-old female pheasants were randomly assigned to four treatment groups (n = 40 in each), fed with a diet artificially contaminated with OTA [control (<0.02 mg/kg), 0.88 mg/kg, 1.14 mg/kg and 1.51 mg/kg] for 21 days (up to 28 days of age). The pheasant chicks were sacrificed at early (12, 24 and 72 h) and late (7, 14 and 21 days) stages of mycotoxin exposure to check the effect of OTA. Minimal feed refusal was found in the medium- and high-dose toxin groups (–9.8 and –7.9%, respectively), and body weight gain was nearly the same in all groups. The glutathione redox system was activated mainly in the liver, confirmed by significantly increased reduced glutathione content and glutathione peroxidase activity during the late phase of mycotoxin exposure and at a high-dose treatment. The results suggest that pheasants have low susceptibility to OTA, and activation of the glutathione redox system has importance in this tolerance.

Open access
Acta Veterinaria Hungarica
Authors: Mangesh Nakade, Csilla Pelyhe, Benjámin Kövesi, Krisztián Balogh, Balázs Kovács, Judit Szabó-Fodor, Erika Zándoki, Miklós Mézes, and Márta Erdélyi

Short-term (48-hour) effects of 3.74/1.26 mg kg−1 T-2/HT-2 toxin or 16.12 mg kg−1 DON in feed were investigated in the liver of three-week-old cockerels (body weight: 749.60 ± 90.98 g). Markers of lipid peroxidation showed no significant changes. At hour 24, glutathione content in the T-2/HT-2 toxin group was significantly higher than in the control. Glutathione peroxidase activity was significantly higher than the control at hour 24 in the T-2/H-2 toxin group and at hour 48 in the DON group. In the DON group, expression of the glutathione peroxidase 4 gene (GPX4) was significantly lower than in the control at hours 12 and 14, and higher at hour 48. Expression of the glutathione reductase gene (GSR) was significantly lower than in the control at hour 12 in the T-2/HT-2 toxin group, and at hours 12, 24 and 48 in the DON group. However, at hour 36 higher GSR expression was measured in the DON group. Due to the effect of both trichothecenes, expression of the glutathione synthetase gene (GSS) was significantly lower than in the control at hours 24 and 48. In conclusion, T-2/HT-2 toxin and DON had a moderate short-term effect on free radical formation. T-2/HT-2 toxin induced more pronounced activation of the glutathione redox system than did DON.

Open access
Acta Veterinaria Hungarica
Authors: Benjámin Kövesi, Szabina Kulcsár, Mátyás Cserháti, Márta Erdélyi, Zsolt Ancsin, Erika Zándoki, Miklós Mézes, and Krisztián Balogh


The purpose of the present study was to use oxidative stress markers for investigating the effect of zeolite (315 mg/kg of complete feed) in the case of aflatoxin B1 contamination (92 μg/kg complete feed). In a 21-day feeding trial with broiler chickens, oxidative stress parameters such as conjugated dienes, conjugated trienes, malondialdehyde, reduced glutathione content and glutathione peroxidase activity were not changed significantly by supplementation with this mycotoxin absorbent. The relative gene expression of transcription factors KEAP1 and NRF2 was not modified by the absorbent either. Still, the expression of GSS, GSR and GPX4 genes increased significantly due to the aluminosilicate supplementation. The results suggest that zeolite reduced lipid peroxidation in the blood plasma but not in the red blood cell haemolysate or the kidney. The relative expression of the genes encoding the glutathione redox system also changed as a result of zeolite supplementation, but these changes were not found at the protein level.

Open access
Biologia Futura
Authors: Rubina Tu¨nde Szabó, Mária Kovács-Weber, Márta Erdélyi, Krisztián Balogh, Natasa Fazekas, Ákos Horváth, Miklós Mézes, and Balázs Kovács

Background and aims

The aim of this study was to verify that the comet assay can be used to investigate the DNA damaging effects of T-2 and HT-2 toxins in the liver of broiler chickens. The comet assay is a favorable genotoxic analysis because it is cheap, simple, and can be used in many organisms and different tissues.

Materials and methods

Male broiler chickens were fed with T-2/HT-2 toxins-contaminated diet for 14 days. The comet assay was successfully adapted to chicken liver cells, and the DNA damage was determined by a decrease in the comet parameter (DNA % in the tail) in the experimental groups.


The method of evaluation was found to be critical because DNA damage could not be detected exactly using the CometScore software, due to inaccurate separation of head and comet. However, this problem can be solved by visual evaluation.


In the case of the visual evaluation, each toxin-treated group differed significantly from the control group, indicating that the assay can be useful for the assessment of primary DNA damage caused by T-2/HT-2 toxins.

Open access