Search Results

You are looking at 1 - 10 of 15 items for :

  • "absolute bioavailability" x
  • User-accessible content x
Clear All
Acta Chromatographica
Authors: Yongxi Jin, Yuyan Chen, Jiawen Liu, Xi Bao, Yinghao Zhi, Congcong Wen, and Wenzong Zhu

blood, the pharmacokinetics of ebeiedinone after intravenous (IV) and oral (PO) administration was studied, and the absolute bioavailability was obtained. 2. Experimental 2.1. Chemicals and Animals

Open access
Acta Chromatographica
Authors: Lianguo Chen, Qingwei Zhang, Yijing Lin, Xiaojie Lu, Zuoquan Zhong, Jianshe Ma, Congcong Wen, and Cheng Ding

spectrometry (UPLC–MS/MS) method was established to determine hapepunine in mouse blood, the pharmacokinetics of hapepunine after intravenous and intragastric administration was studied, and the absolute bioavailability was obtained

Open access
Acta Chromatographica
Authors: Weijian Ye, Wei Sun, Ruijie Chen, Zhe Wang, Xiao Cui, Hui Zhang, Shuyi Qian, Qi Zheng, Yangfeng Zhou, Jiafeng Wan, Jiali Xu, Xianqin Wang, and Yunfang Zhou

circulatory system. Clearance, MRT (0 − t ) , and t 1/2 values were estimated at 97.0 ± 28.9 L/h/kg, 0.8 ± 0.1 h, and 0.7 ± 0.2 h, respectively, indicating rapid elimination from the circulatory system in rats. The absolute bioavailability of GAL was 7

Open access
Acta Chromatographica
Authors: Xi Bao, Bingge Huang, Yiting Mao, Zhiguang Zhang, Yunfang Zhou, Congcong Wen, and Quan Zhou

Byakangelicol is one of coumarins from Baizhi and has been shown to inhibit the release of PGE2 from human lung epithelial A549 cells in a dose-dependent manner. A sensitive ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method was developed and full validated for the quantification of byakangelicol in rat plasma. The pharmacokinetics of byakangelicol after both intravenous (5 mg/kg) and oral (15 mg/kg) administrations were studied. Chromatographic separation was performed on an ultra-performance liquid chromatography ethylene bridged hybrid (UPLC BEH) C18 column with acetonitrile and 0.1% formic acid as the mobile phase at a flow rate of 0.4 mL/min; fargesin was used as the internal standard (IS). The following quantitative analysis of byakangelicol was utilized in the multiple reaction monitoring mode. The samples were extracted from rat plasma via protein precipitation using acetonitrile. In the concentration range of 1–2000 ng/mL, the method correlated linearity (r > 0.995) with a lower limit of quantitation (LLOQ) of 1 ng/mL. Intra-day precision was less than 11%, and inter-day precision was less than 12%. The accuracy was between 92.0% and 108.7%, the recovery was better than 89.6%, and the matrix effect was between 85.9% and 98.6%. The method was successfully applied to a pharmacokinetic study of byakangelicol after intravenous and oral administration, and the absolute bioavailability was 3.6%.

Open access

Abstract

Calycanthine is an important class of alkaloids extracted and isolated from the roots, leaves, flowers and fruits of Chimonanthus praecox. In this work, the UPLC-MS/MS method was used for determination of calycanthine in rat plasma, and the pharmacokinetics in rats were investigated. Midazolam was used as an internal standard (IS), and methanol precipitation method was used to pretreatment the rat plasma samples. Chromatographic separation was achieved on a UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column with the mobile phase of methanol- 0.1% formic acid aqueous solution with gradient elution. Multiple reaction monitoring (MRM) mode with positive ionization was applied for quantitative analysis, m/z 347.3 → 246.7 and 326.2 → 291.4 for calycanthine and IS, respectively. The results indicated that within the range of 1–200 ng/mL, linearity of calycanthine in rat plasma was good (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Accuracy range was between 90.6 and 109.4%, precision (RSD) of calycanthine was less than 14%. The matrix effect was between 97.9% and 105.4%, the recovery was better than 85.6%. The developed UPLC-MS/MS method was successfully applied in the pharmacokinetics of calycanthine in rats after oral and intravenous administration. The absolute bioavailability of the calycanthine was 37.5% in rats.

Open access

Abstract

Palmatine is a compound with good water solubility extracted from Coptis chinensis, Fibraurea recisa Pierre, Cortex Phellodendri Chinensis. Palmatine has good antibacterial activity and mainly used for the treatment of bacterial dysentery, gynecological inflammation, surgical infection, and conjunctivitis. It has anti-diabetic, anti-oxidant, and cognitive-enhancing activities. In this study, we used UPLC-MS/MS to determinate palmatine in rat plasma, and investigated its pharmacokinetics. Coptisine was utilized as an internal standard (IS), and acetonitrile precipitation method was used to process the plasma samples. Chromatographic separation was achieved using a UPLC BEH C18 column using mobile phase of acetonitrile- 0.1% formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization was applied. The results indicated that within the range of 1–500 ng/mL, linearity of palmatine in rat plasma was acceptable (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Intra-day and inter-day precision RSD of palmatine in rat plasma were less than 14%. Accuracy range was between 93.7 and 107.1%, and matrix effect was between 101.6 and 109.4%. The method was successfully applied in the pharmacokinetics of palmatine in rats after oral and intravenous administration. The absolute bioavailability of the palmatine was 15.5% in rats.

Open access

Abstract

Palmatine is a compound with good water solubility extracted from Coptis chinensis, Fibraurea recisa Pierre, Cortex Phellodendri Chinensis. Palmatine has good antibacterial activity and mainly used for the treatment of bacterial dysentery, gynecological inflammation, surgical infection, and conjunctivitis. It has anti-diabetic, anti-oxidant, and cognitive-enhancing activities. In this study, we used UPLC-MS/MS to determinate palmatine in rat plasma, and investigated its pharmacokinetics. Coptisine was utilized as an internal standard (IS), and acetonitrile precipitation method was used to process the plasma samples. Chromatographic separation was achieved using a UPLC BEH C18 column using mobile phase of acetonitrile- 0.1% formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization was applied. The results indicated that within the range of 1–500 ng/mL, linearity of palmatine in rat plasma was acceptable (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Intra-day and inter-day precision RSD of palmatine in rat plasma were less than 14%. Accuracy range was between 93.7 and 107.1%, and matrix effect was between 101.6 and 109.4%. The method was successfully applied in the pharmacokinetics of palmatine in rats after oral and intravenous administration. The absolute bioavailability of the palmatine was 15.5% in rats.

Open access

Abstract

Calycanthine is an important class of alkaloids extracted and isolated from the roots, leaves, flowers and fruits of Chimonanthus praecox. In this work, the UPLC-MS/MS method was used for determination of calycanthine in rat plasma, and the pharmacokinetics in rats were investigated. Midazolam was used as an internal standard (IS), and methanol precipitation method was used to pretreatment the rat plasma samples. Chromatographic separation was achieved on a UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column with the mobile phase of methanol- 0.1% formic acid aqueous solution with gradient elution. Multiple reaction monitoring (MRM) mode with positive ionization was applied for quantitative analysis, m/z 347.3 → 246.7 and 326.2 → 291.4 for calycanthine and IS, respectively. The results indicated that within the range of 1–200 ng/mL, linearity of calycanthine in rat plasma was good (r > 0.995), and the lower limit of quantification (LLOQ) was 1 ng/mL. Accuracy range was between 90.6 and 109.4%, precision (RSD) of calycanthine was less than 14%. The matrix effect was between 97.9% and 105.4%, the recovery was better than 85.6%. The developed UPLC-MS/MS method was successfully applied in the pharmacokinetics of calycanthine in rats after oral and intravenous administration. The absolute bioavailability of the calycanthine was 37.5% in rats.

Open access
Acta Chromatographica
Authors: Yonghui Shen, Deru Meng, Feifei Chen, Hui Jiang, Liming Hu, Yunfang Zhou, and Miaomiao Zhang

Use Committee of Wenzhou Medical University (NO. wydw2017-0010) and were following the Guide for the Care and Use of Laboratory Animals. Absolute bioavailability (Fabs) was the non-intravenous dose-corrected AUC divided by AUC intravenous, calculated

Open access

dose. Absolute bioavailability was found to be 50% on day 1 and 68% on day 5. Similarly, after 40 mg oral administration, peak plasma concentration was increased by 95% (2.38 µmol/L versus 4.64 µmol/L) and the AUC by 159% (4.32 µmol × h/L versus 11

Open access