Search Results

You are looking at 91 - 100 of 169 items for

  • Author or Editor: Y. Li x
  • All content x
Clear All Modify Search

The aim of this study was to investigate the effects of maternal lead exposure on the learning and memory ability and expression of tau protein phosphorylation (P-tau) and beta amyloid protein (Aβ) in hippocampus of mice offspring. Pb exposure initiated from beginning of gestation to weaning. Pb acetate administered in drinking solutions was dissolved in distilled deionized water at the concentrations of 0.1%, 0.5% and 1% groups. On the 21 th of postnatal day, the learning and memory ability of the mouse pups was tested by Water Maze test and the Pb levels in blood and hippocampus of the offspring were also determined. The expression of P-tau and Aβ in hippocampus was measured by immunohistochemistry and Western blotting. The Pb levels in blood and hippocampus of all exposure groups were significantly higher than that of the control group ( P < 0.05). In Water Maze test, the performances of 0.5% and 1% groups were worse than that of the control group ( P < 0.05). The expression of P-tau and Aβ was increased in Pb exposed groups than that of the control group ( P < 0.05). Tau hyper-phosphorylation and Aβ increase in the hippocampus of pups may contribute to the impairment of learning and memory associated with maternal Pb exposure.

Restricted access

Barley stripe mosaic virus (BSMV)-based virus induced gene silencing (VIGS) is an effective strategy for rapid determination of functional genes in wheat plants. ERECTA genes are reported to regulate stomatal pattern of plants, and manipulation of TaERECTA (a homologue of ERECTA in bread wheat) is a potential route for investigating stomatal development. Here, the leucine-rich repeat domains (LRRs) and transmembrane domains of TaERECTA were selected to gain BSMV:ER-LR and BSMV:ER-TM constructs, respectively, targeting TaERECTA for silencing in wheat cultivars ‘Bobwhite’ and ‘Cadenza’, to identify the function of TaERECTA on stomatal patterns. The results showed that reduced expression of TaERECTA caused an increased stomatal and epidermal cell density by average 13.5% and 3.3%, respectively, due to the significantly reduced size of leaf epidermal and stomatal cells, and this led to an increase in stomatal conductance. These suggest that modulation of TaERECTA offers further opportunities in stomatal engineering for the adaptation of photosynthesis in wheat.

Restricted access

Thinopyrum ponticum is particularly a valuable source of genes for wheat improvement. A novel wheat-Th. ponticum addition line, 1–27, was identified using cytology, SSR, ESTSSR, EST-STS and PCR-based landmark unique gene (PLUG) markers in this study. Cytological studies showed that 1–27 contained 44 chromosomes and formed 22 bivalents at meiotic metaphase I. Genomic in situ hybridization (GISH) analysis indicated that two chromosomes from Th. ponticum had been introduced into 1–27 and that these two chromosomes could form a bivalent in wheat background. Such results demonstrated that 1–27 was a disomic addition line with 42 wheat chromosomes and a pair of Th. ponticum chromosomes. One SSR marker (BARC235), one EST-STS marker (MAG3284) and 8 PLUG markers (TNAC1210, TNAC1787, TNAC1803, TNAC1805, TNAC1806, TNAC1821, TNAC1867 and TNAC1957), which were all from wheat chromosome group 7, produced the specific band in Th. ponticum and 1–27, indicating that the introduced Th. ponticum chromosomes belonging to the group 7 of wheat. Sequence analysis on specific bands from Th. ponticum and 1–27 amplified using the PLUG marker TNAC1867 further confirmed this result. The 1–27 addition line was also observed to be high resistant to powdery mildew though it is not clear if the resistance of 1–27 inherited from Th. ponticum. This study provided some useful information for effective exploitation of the source of genetic variability in wheat breeding.

Restricted access

Grain yield (GY) and yield components (YC) were investigated using two F8: 9 RILs, comprising 229 and 485 lines, respectively. A conditional analysis was conducted to generate conditional values for GY independent of each YC. Then both unconditional and conditional values were analyzed to map QTLs with additive effect. In both RILs, up to 23 unconditional and conditional QTLs were detected. However, only two QTLs were identified repeatedly among environments. All QTLs, except for 4 detected in unconditional mapping, were also identified as conditional QTLs, whereas a number of QTLs were additionally detected in conditional mapping. The number of QTLs detected that affected GY was different with respect to component-special influences. Our results revealed that the contributions of YC influencing QTL expression related to GY differed.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: X.-C. Lv, Z.-C. Tan, Z.-A. Li, Y.-S. Li, J. Xing, Q. Shi, and L.-X. Sun

Abstract  

The (R)-BINOL-menthyl dicarbonates, one of the most important compounds in catalytic asymmetric synthesis, was synthesized by a convenient method. The molar heat capacities C p,m of the compound were measured over the temperature range from 80 to 378 K with a small sample automated adiabatic calorimeter. Thermodynamic functions [H TH 298.15] and [S TS 298.15] were derived in the above temperature range with a temperature interval of 5 K. The thermal stability of the substance was investigated by differential scanning calorimeter (DSC) and a thermogravimetric (TG) technique.

Restricted access
Cereal Research Communications
Authors: Y.P. Jing, D.T. Liu, X.R. Yu, F. Xiong, D.L. Li, Y.K. Zheng, Y.F. Hao, Y.J. Gu, and Z. Wang

The objective of the present study was to understand the developmental regularity of wheat endosperm cells at different Days After Pollination (DAP) using microscopic and histochemical methods. Resin semi-thin sections of the endosperm and the enzymatically dissociated Starchy Endosperm Cells (SECs) were observed under a light microscope. The results showed that: (1) SECs were irregular-shaped and had two types of starch granules: large oval-shaped A-type starch granules and small spherical B-type starch granules. (2) The growth shape of SECs was referred to as S-curve and the fastest cell growth period was at 16–24 DAP. (3) The largest increase and growth of A-type starch granules were mainly at 4–16 DAP. B-type starch granules increased rapidly after 16 DAP and made up over 90% of the total starch granules in SEC during the late stage of endosperm development. (4) The nuclei of SEC deformed and degenerated during the middle and late stages of endosperm development and eventually disappeared. However, starch granules still increased and grew after the cell nuclei had degenerated. The investigations showed the development regularity of starch endosperm cells and starch granules, thereby improving the understanding of wheat endosperm development.

Restricted access
Cereal Research Communications
Authors: S.F. Dai, D.Y. Xu, Z.J. Wen, Z.P. Song, H.X. Chen, H.Y Li, J.R. Li, L.Z. Kang, and Z.H. Yan

A novel 4.0-kb Fy was sequenced and bacterially expressed. This gene, the largest y-type HMW-GS currently reported, is 4,032-bp long and encodes a mature protein with 1,321 amino acid (AA) residues. The 4.0-kb Fy shows novel modifications in all domains. In the N-terminal, it contains only 67 AA residues, as three short peptides are absent. In the repetitive domain, the undecapeptide RYYPSVTSPQQ is completely lost and the dodecapeptide GSYYPGQTSPQQ is partially absent. A novel motif unit, PGQQ, is present in addition to the two standard motif units PGQGQQ and GYYPTSPQQ. Besides, an extra cysteine residue also occurs in the middle of this domain. The large molecular mass of the 4.0-kb Fy is mainly due to the presence of an extra-long repetitive domain with 1,279 AA residues. The novel 4.0-kb Fy gene is of interest in HMW-GS gene evolution as well as to wheat quality improvement with regard to its longest repetitive domain length and extra cysteines residues.

Restricted access

Abstract  

To investigate the effects of lanthanum exposure on regional distribution of inorganic elements in rat brain. Wistar rats were exposed to lanthanum chloride through oral administration at 0, 0.1, 2, and 40 mg/kg concentration for 6 months. The elements such as Cl, K, Ca, Fe, Cu, and Zn were identified in the brain slices by synchrotron radiation X-ray fluorescence (SRXRF) analysis. Differences of brain elemental distributions were noticed. Cl, Ca, and Zn were primarily concentrated in hippocampus of the controls. With the increase of the lanthanum dosage, the Ca and Zn levels significantly decreased, while the Cu levels significantly elevated in cortex, hippocampus and thalamus. Our results suggest that subchronic lanthanum exposure in rats appears to change elemental distributions in brain.

Restricted access

Gibberellins (GAs) are a class of plant hormones that play important roles in diverse aspects during plant growth and development. A series of GA synthesis and metabolism genes have been reported or proved to have essential functions in different plant species, while a small number of GA 2-oxidase genes have been cloned or reported in wheat. Previous studies have provided some important findings on the process of GA biosynthesis and the enzymes involved in its related pathways. These may facilitate understanding of the complicated process underlying GA synthesis and metabolism in wheat. In this study, GA 2-oxidase genes TaGA2ox1-1, TaGA2ox1-2, TaGA2ox1-3, TaGA2ox1-4, TaGA2ox1-5, and TaGA2ox1-6 were identified and further overexpressed in rice plants to investigate their functions in GA biosynthesis and signaling pathway. Results showed overexpression of GA 2-oxidase genes in rice disrupted the GA metabolic pathways and induced catalytic responses and regulated other GA biosynthesis and signaling pathway genes, which further leading to GA signaling disorders and diversity in phenotypic changes in rice plants.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: L. Xu, Y. De-Jun, L. Qiang-Guo, L. Ai-Tao, Y. Li-Juan, J. Qian-Hong, and L. Yi

Abstract  

The product from reaction of samarium chloride hexahydrate with salicylic acid and Thioproline, [Sm(C7H5O3)2·(C4H6NO2S)]·2H2O, was synthesized and characterized by IR, elemental analysis, molar conductance, and thermogravimetric analysis. The standard molar enthalpies of solution of [SmCl3·6H2O(s)], [2C7H6O3(s)], [C4H7NO2S(s)] and [Sm(C7H5O3)2·(C4H7NO2S)·H2O(s)] in a mixed solvent of absolute ethyl alcohol, dimethyl sulfoxide(DMSO) and 3 mol L−1 HCl were determined by calorimetry to be Δs H m Φ[SmCl3 δ6H2O (s), 298.15 K]= −46.68±0.15 kJ mol−1 Δs H m Φ[2C7H6O3 (s), 298.15 K]= 25.19±0.02 kJ mol−1, Δs H m Φ[C4H7NO2S (s), 298.15 K]=16.20±0.17 kJ mol−1 and Δs H m Φ[Sm(C7H5O3)2·(C4H6NO2S)]·2H2O (s), 298.15 K]= −81.24±0.67 kJ mol−1. The enthalpy change of the reaction

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$SmCl_3 \cdot 6H_2 O(s) + 2C_7 H_6 O_3 (s) + C_4 H_7 NO_2 S(s) = Sm(C_7 H_5 O_3 )_2 \cdot (C_4 H_6 NO_2 S) \cdot 2H_2 O(s) + 3HCl(g) + 4H_2 O(1)$$ \end{document}
((1)) was determined to be Δs H m Φ =123.45±0.71 kJ mol−1. From date in the literature, through Hess’ law, the standard molar enthalpy of formation of Sm(C7H5O3)2(C4H6NO2S)δ2H2O(s) was estimated to be Δs H m Φ[Sm(C7H5O3)2·(C4H6NO2S)]·2H2O(s), 298.15 K]= −2912.03±3.10 kJ mol−1.

Restricted access