Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: A. Börner x
  • All content x
Clear All Modify Search
Cereal Research Communications
Authors: S. Osipova, A. Permyakov, M. Permyakova, V. Davydov, T. Pshenichnikova, and A. Börner

Variation in tolerance of prolonged drought was identified among a set of single chromosome bread wheat substitution lines, involving the replacement of each cv. Chinese Spring chromosome in turn with its homologue from a synthetic hexaploid (Triticum dicoccoides × Aegilops tauschii). Water stress was applied under controlled conditions by limiting the supply of water to 30% from 100% aqueous soil. The reaction to the resulting long-term drought stress was quantified by three indices, based on grain yield components. Enhanced drought tolerance was associated with the presence of donor chromosomes 1A, 5A, 1D, 3D, 5D and 6D, and enhanced susceptibility with chromosomes 3A, 4B and 7D.

Restricted access
Cereal Research Communications
Authors: E. Khlestkina, E. Antonova, L. Pershina, A. Soloviev, E. Badaeva, A. BÖrner, and E. Salina

Anthocyanin accumulation in vegetative organs has a relationship to stress resistance in plants. In wheat, ability to accumulate anthocyanins in the coleoptile is inherited and controlled by the Rc (red coleoptile) genes. The aim of the current study was to find potential sources of ‘strong’ Rc alleles conferring very high levels of anthocyanin production and to study the effect of genetic background on Rc expression. We measured the relative anthocyanin content (OD530) in the coleoptile of different wheat and wheat-alien genetic stocks and accessions to find potential sources of ‘strong’ Rc alleles conferring very high levels of anthocyanin production. The OD530 values varied from 0.514 to 3.311 in genotypes having red coleoptiles. The highest anthocyanin content was detected in coleoptiles of four Triticum dicoccoides accessions originating from Israel and the Russian T. aestivum cultivar ‘Novosibirskaya 67’, suggesting that their Rc alleles can be used to increase anthocyanin content in the coleoptile of wheat cultivars. It is also suggested that rye Rc alleles, such as that of Russian cultivar ‘Selenga’, can be used to increase anthocyanin content in triticale seedlings.

Restricted access

The parents (the landrace Chinese spring (CS) and a synthetic hexaploids (S6x)) and 17 derived single chromosome substitution lines (SL) were grown in parallel in the field under non-saline (1.0 dSm−1) and saline (12.0 dSm−1) conditions, and evaluated for a set of phenotypic traits. The performance of CS indicated it to have borderline salinity tolerance with respect to all of the traits except for leaf area (for which it behaved in as a salinity sensitive type). The SL 4D was early in booting, ear emergence, flowering and maturity, while 5D and 2B SLs were both late. The 2B SL produce 33% more ears than CS. The 5D SL under-performed with respect to ear weight, grain number per ear, grain weight per ear and 1000-grain weight both under non-saline and saline conditions. Under saline conditions, four SLs (1A>5A>1D>2B) outperformed Cs for ear length, and six SLs (1D>6A>4B>3A>3B>3D) showed an improved grain weight. The grains produce by the 2B SL were smaller than those of CS. Leaf area developed better in four SLs (4D>2B>1A>7D) than in CS.

Restricted access

Bread wheat is the primary bread crop in the majority of countries in the world. The most important product that is manufactured from its grain and flour is yeast bread. In order to obtain an excellent bread, grain with high physical properties is needed for flour and dough. The Russian spring wheat cultivar Saratovskaya 29 is characterized by its exclusively high physical properties of flour and dough. The purpose of this work was to identify the chromosomes carrying the main loci for these traits in Saratovskaya 29 and to map them using recombinant substitution lines genotyped with molecular markers. A set of inter-varietal substitution lines Saratovskaya 29 (Yanetzkis Probat) was used to identify the “critical” chromosomes. The donor of individual chromosomes is a spring cultivar with average dough strength and tenacity. Substitution of 1D and 4D*7A chromosomes in the genetic background of Saratovskaya 29 resulted in a significant decrease in the physical properties of the dough. Such a deterioration in the case of 1D chromosome might be related to the variability of gluten protein composition. With the help of recombinant substitution double haploid lines obtained from a Saratovskaya 29 (Yanetzkis Probat 4D*7A) substitution line the region on the 4D chromosome was revealed in the strong-flour cultivar Saratovskaya 29, with the microsatellite locus Xgwm0165 to be associated with the unique physical properties of flour and dough. The detected locus is not related to the composition gluten proteins. These locus may be recommended to breeders for the selection of strong-flour cultivars. Additionally, a QTL associated with vitreousness of grain was mapped in the short arm of chromosome 7A.

Restricted access

Tan spot, caused by the fungus Pyrenophora tritici-repentis (Died.) Drechs is an important foliar disease of wheat (Triticum aestivum L.). From a set of phenotypically and molecularly characterized set of Argentinean isolates, two isolates H0019 and H0120 which do not correspond to known races of the pathogen were selected. Segregation for resistance among a set of recombinant inbred lines bred from the cross ‘W7984’ × cv. ‘Opata 85’ was used to identify the basis for resistance at the seedling stage, against those fungal isolates (H0019 and H0120), across three independent environments. On the basis of the mean performance across all three environments, a QTL against chlorosis located on the 6AS and linked to the RFLP locus Xksuh4c was significant for both isolates (with a LOD of 3.76 for isolate H0019 and 5.87 for H0120).

Restricted access