Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: D. Giron x
  • All content x
Clear All Modify Search

Abstract  

The polymorphic behaviour of the purine derivative MKS 492 was studied with investigations of suspensions of selected samples in different solvents and of samples obtained by crystallizations. The samples were analyzed by DSC, TG and X-ray diffraction. Six different crystalline modifications called A, B, B, C, D and E and an amorphous form were identified. Four pure crystalline modifications, A, B, C and D have been manufactured and characterized by DSC, X-ray, IR, solubilities, densities, hygroscopicity and dissolution measurements. The four forms A, C, D and E are monotrop to the form B. The form B is enantiotrop to the form B, which revealed the highest melting point of all known polymorphs. This form B is only stable at high temperature. Temperature resolved X-ray diffraction was very helpful for proper interpretation of the thermal events. The melting peaks of the forms A and C and the endothermic peak corresponding to the enantiotropic transition B into B occur in a narrow range of temperature. The form B which is the most stable one at room temperature has been chosen for further development. Quantitative methods to determine the content of the forms A, C and D in samples of form B or to determine the content of form A, B and D in form C have been developed by using X-ray diffraction. Limits of detection are 1 or 2%. For the quantitative determination of the amorphous fraction, X-ray diffraction and microcalorimetry are compared. For high amounts of the amorphous fraction, the X-ray diffraction method is preferred because it is faster. Microcalorimetry is very attractive for levels below 10% amorphous content. The lowest limit of detection is obtained by microcalorimetry, about 1%.

Restricted access

Abstract  

The local anesthetic drug tetracaine hydrochloride is described in the Europ. Pharmacopea with a melting point of 148°C or with a range of 134 to 147°C due to the melting points of two other forms. The polymorphic behaviour of tetracaine hydrochloride has been studied by using thermal treatments, storage at 92% r.h., crystallizations and equilibrations with saturated solutions. Samples were characterized by X-ray diffraction, IR, thermal analysis and elemental analysis. Since some findings were difficult to interpret, temperature resolved X-ray diffraction was used additionally for the understanding of the thermal behaviour of tetracaine hydrochloride. In this study the polymorphic behaviour of some other local anesthetic drugs is compared. Ten different forms of tetracaine hydrochloride: six anhydrous crystalline forms, an amorphous form, a hemihydrate, a monohydrate and a tetrahydrate were identified. The relationships between all forms are given. The heating curve of the commercial form 1 is very dependent on the heating rate. This anhydrous form 1 is the thermodynamic stable modification at ambient temperature. The form 2 is reversibly enantiotrope to form 1. The four other modifications called 3, 4, 5 and 6 are monotropes of form 1. Only forms 1 and 5 are stable at ambient temperature. Form 1 is hygroscopic only at high humidity level of 92% r.h., form 5 is hygroscopic at 61% r.h. Both transform into the monohy-drate. No polymorphic forms of tetracaine base, dibucaine hydrochloride, procaine hydrochloride or prilocaine hydrochloride were found. The commercial form of bupivacaine hydrochloride is a monohydrate. Thermal treatment at 200°C gives one anhydrous form. As demonstrated by temperature resolved X-ray diffraction two other forms are detected by heating and cooling processes between 100 and 170°C. Equilibrations and crystallization experiments show that solvates are easily obtained in different solvents. Temperature resolved X-ray diffraction is a very efficient tool as a support to DSC for the identification of the transition processes and interpretation of thermal events and thermodynamic relationships. Equilibration experiments are very adequate to find out the thermodynamically stable form at ambient temperature (solvent mediated transitions).

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: D. Giron, Ch. Goldbronn, M. Mutz, S. Pfeffer, Ph. Piechon, and Ph. Schwab

Abstract  

Manufacturing processes may involve the presence of water in the crystallization of the drug substance or in manufacturing or in the composition of the drug product through excipients. Dehydration steps may occur in drying, milling, mixing and tabletting processes. Furthermore, drug substances and drug products are submitted to different temperatures and relative humidities, due to various climatic conditions giving rise to unexpected hydration or dehydration aging phenomena. Therefore the manufacture and the characterization of hydrates is part of the study of the physical properties of drug substances. Several hydrates and even polymorphic forms thereof can be encountered. Upon dehydration crystal hydrates may retain more or less their original crystal structure, they can lose crystallinity and give anamorphous phase, they can transform to crystalline less hydrated forms or to crystalline anhydrous forms. The proper understanding of the complex polyphasic systemhydrates–polymorphs–amorphous state needs several analytical methods. The use of techniques such as DSC-TG, TG-MS, sorption-desorption isotherms, sub-ambient experiments, X-ray diffraction combined with temperature or moisture changes as well as crystal structure and crystal modelling in addition to solubilities and dissolution experiments make interpretation and quantitation easier as demonstrated with some typical examples.

Restricted access