Search Results

You are looking at 11 - 20 of 20 items for

  • Author or Editor: F. Zhou x
  • All content x
Clear All Modify Search

Abstract

Microfluidic solvent extraction (microSX) of metal ions from industrial grade mineral leach solutions was studied. In conventional bulk-scale SX, partially hydrophobic nanoparticles that are present in the leach solution readily adsorb at the liquid-liquid interface of the dispersed droplets, causing delayed or incomplete phase separation and reduce efficiency. In contrast, microSX employs continuous microscopic streams of aqueous and organic phases (without mixing the phases) and, in this way, bypasses the need for a conventional phase separation stage. This makes the technique promising for handling complex leach solutions. The stability of the two-phase flow is considered in terms of the surface wettability and guiding geometry of the microchannel, which determines the Laplace pressure window that stabilizes the liquid-liquid interface. We show that careful characterization of the microchannel wettability, including contact angle hysteresis, is essential to predict long-term flow stability.

Restricted access

The inhibitory effects of phytic acid (PA) on the browning of fresh-cut chestnuts and the associated mechanisms of PA on polyphenol oxidase (PPO) and peroxidase (POD) activities were investigated. The enzymatic browning of chestnut surfaces and interiors was suppressed by soaking shelled and sliced chestnuts in a PA solution. The specific activities of PPO and POD extracted from chestnuts declined due to inhibition by PA. PA was determined to be a competitive inhibitor of both PPO and POD by Lineweaver-Burk plots. The binding modes of PA with PPO and POD were analysed by AutoDock 4.2.

Restricted access

This research was aimed to study the cell wall degradation and the dynamic changes of Ca2+ and related enzymes in developing aerenchyma of wheat root under waterlogging. An examination of morphological development by light and electron microscope revealed that the structure of cell wall in middle cortical cells remained intact after 12 h of waterlogging and turned thinner after waterlogging for 24 h. At 48 h, the aerenchyma has been formed. The cellulase activity gradually increased in middle cortical cells within 24 h of waterlogging, and decreased with the formation of aerenchyma. Fluorescence detection and subcellular localization of Ca2+ showed the dynamic changing of Ca2+ at the cellular and subcellular levels during the development of aerenchyma. The activity of Ca2+-ATPase enhanced markedly in intercellular space, plasma membrane and tonoplast of some middle cortical cells after 8 h of waterlogging and remained high after 24 h, but it decreased after 48 h of waterlogging. All these suggests that cellulase, Ca2+ and Ca2+-ATPase show a dynamic distribution during the aerenchyma development which associated with the cell wall degradation of middle cortical cells. Moreover, there is a feedback regulation between Ca2+ and Ca2+-ATPase.

Restricted access
Cereal Research Communications
Authors: X. Gong, C. Liu, Y. Wang, X. Zhao, M. Zhou, M. Hong, S. Wang, N. Li, and F. Hong

The mechanism of the fact that Mn deficiency damages the photosynthesis of plants is not yet fully understood. The main aim of the study was to determine Mn deficiency effects in photophosphorylation and key enzymes of CO 2 assimilation of maize. Maize plants were cultivated in Hoagland’s solution. They were subjected to Mn deficiency and to Mn administered in the Mn-deficient Hoagland’s media. The results showed that Mn deficiency was found to cause extensive declines in plant weight and chlorophyll a content, electron transport and oxygen-evolving rate, photophosphorylation rate, activities of Mg 2+ -ATPase, Ca 2+ -ATPase, Rubisco and Rubisco activase, and mRNA expressions of Rubisco and Rubisco activase of maize, but it only slightly affected chlorophyll b and carotenoid formation. However, Mn addition decreased the inhibition of the photosynthesis in maize caused by Mn deficiency.

Restricted access
Journal of Radioanalytical and Nuclear Chemistry
Authors: H. J. Ding, Y. N. Niu, Y. B. Xu, W. F. Yang, S. G. Yuan, Z. Qin, and X. H. Zhou

Summary  

The extraction of protactinium with Aliquat 336 (methyl-tri-caprylyl ammonium chloride) in toluene, cyclohexane and chloroform from HCl, HNO3, H2SO4, HClO4, HF and mixed HCl-HF media was investigated by radioactive tracer technique. Distribution ratios of protactinium between the aqueous solution and the organic phase were determined as a function of shaking time, concentrations of acid in aqueous solution phase, extractant concentration and type of diluents in the organic phase. Aliquat 336 can almost quantitatively extract protactinium from strong HCl solution. At the same time, small amounts of HF in HCl solutions have a strong effect on Pa distribution.

Restricted access

Gibberellins (GAs) are a class of plant hormones that play important roles in diverse aspects during plant growth and development. A series of GA synthesis and metabolism genes have been reported or proved to have essential functions in different plant species, while a small number of GA 2-oxidase genes have been cloned or reported in wheat. Previous studies have provided some important findings on the process of GA biosynthesis and the enzymes involved in its related pathways. These may facilitate understanding of the complicated process underlying GA synthesis and metabolism in wheat. In this study, GA 2-oxidase genes TaGA2ox1-1, TaGA2ox1-2, TaGA2ox1-3, TaGA2ox1-4, TaGA2ox1-5, and TaGA2ox1-6 were identified and further overexpressed in rice plants to investigate their functions in GA biosynthesis and signaling pathway. Results showed overexpression of GA 2-oxidase genes in rice disrupted the GA metabolic pathways and induced catalytic responses and regulated other GA biosynthesis and signaling pathway genes, which further leading to GA signaling disorders and diversity in phenotypic changes in rice plants.

Restricted access

Summary

A reversed-phase chiral liquid chromatographic method had been developed and validated for resolution of the enantiomers of racemic fudosteine. The effects on the separation of the amounts of anhydrous cupric sulfate and l-phenylalanine, the methanol content, mobile phase pH, and temperature were investigated. The method was validated for linearity, repeatability, intermediate precision, sample recovery, solution stability, and limits of detection (LOD). l-Phenylalanine and anhydrous cupric sulfate as chiral ligand-exchange complexes were used for separation, isomer identification, related substance investigation, and analysis of fudosteine enantiomers in fudosteine bulk drugs and fudosteine tablets.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: J. Yao, F. Wang, L. Tian, Y. Zhou, H. Chen, K. Chen, N. Gai, R. Zhuang, T. Maskow, B. Ceccanti, and G. Zaray

Abstract  

Using TAM III multi-channel calorimetry combined with direct microorganism counting (bacteria, actinomycetes and fungi) under laboratory conditions, we determined the microbial population count, resistance and activity toward cadmium (Cd(II)) and hexavalent chromium (Cr(VI)) toxicity in soil. The thermokinetic parameters, which can represent soil microbial activity, were calculated from power-time curves of soil microbial activity obtained by microcalorimetric measurement. Simultaneous application of the two methods showed that growth rate constant (k), peak-heat output power (P max) and the number of living microorganisms decreased with increasing concentration of Cd and Cr. The accumulation of Cr on E. coli was conducted by HPLC-ICP-MS. Cr6+ accumulation by Escherichia coli was increased steadily with increasing Cr6+ concentration. The results revealed that the change in some thermo-kinetic parameters could have good corresponding relationship with metal accumulation. Our work also suggests that microcalorimetry is a fast, simple, more sensitive, on-line and in vitro method that can be easily performed to study the toxicity of different species of heavy metals on microorganism compared to other biological methods, and can combine with other analytic methods to study the interaction mechanism between environmental toxicants and microbes.

Restricted access

This study was conducted to compare structural development and biochemical accumulation of waxy and non-waxy wheat (NW) caryopses. The caryopses’ microstructure of the waxy wheat (WW) and NW cultivars at different developmental stages were observed under light, fluorescence, and scanning electron microscope. The results were as follows: Compared with NW,WWhad a shorter maturation duration, which was reflected in several following characteristics. Programmed cell death of the pericarp began earlier, and the chlorophyll-containing layer in the pericarp was smaller. Vacuoles in chalazal cells accumulated more tannins at different developmental stages. Starch granules and protein bodies in the endosperm showed a higher accumulation level in developing caryopses, and aleurone cells were larger in size with larger numbers of aleurone grains. An analysis of the element content indicated that the mineral elements Mg, P, K, and Ca exhibited a higher content, while the heavy elements Cr, Cd, and Pb exhibited a lower content in the aleurone layer.

Restricted access

Chromosome segment substitution lines (CSSLs) are powerful tools to combine naturally occurring genetic variants with favorable alleles in the same genetic backgrounds of elite cultivars. An elite CSSL Z322-1-10 was identified from advanced backcrosses between a japonica cultivar Nipponbare and an elite indica restorer Xihui 18 by SSR marker-assisted selection (MAS). The Z322-1-10 line carries five substitution segments distributed on chromosomes 1, 2, 5, 6 and 10 with an average length of 4.80 Mb. Spikilets per panicle, 1000-grain weight, grain length in the Z322-1-10 line are significantly higher than those in Nipponbare. Quantitative trait loci (QTLs) were identified and mapped for nine agronomic traits in an F3 population derived from the cross between Nipponbare and Z322-1-10 using the restricted maximum likelihood (REML) method in the HPMIXED procedure of SAS. We detected 13 QTLs whose effect ranging from 2.45% to 44.17% in terms of phenotypic variance explained. Of the 13 loci detected, three are major QTL (qGL1, qGW5-1 and qRLW5-1) and they explain 34.68%, 44.17% and 33.05% of the phenotypic variance. The qGL1 locus controls grain length with a typical Mendelian dominance inheritance of 3:1 ratio for long grain to short grain. The already cloned QTL qGW5-1 is linked with a minor QTL for grain width qGW5-2 (13.01%) in the same substitution segment. Similarly, the previously reported qRLW5-1 is also linked with a minor QTL qRLW5-2. Not only the study is important for fine mapping and cloning of the gene qGL1, but also has a great potential for molecular breeding.

Restricted access