Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Feng Tang x
  • All content x
Clear All Modify Search
Cereal Research Communications
Authors: Zhengqiang Ma, Shulin Xue, Feng Lin, Shaohua Yang, Guoqiang Li, Mingzhi Tang, Zhongxin Kong, Yong Cao, Dongmei Zhao, Haiyan Jia, Zhengzhi Zhang, and Lixia Zhang

Wangshuibai is an indigenous scab resistance germplasm originated from Jiangsu, China. To characterize the genetic basis of scab resistance in this germplasm, QTLs for type I and type II resistances were detected using a recombinant inbred line (RIL) population created by single seed descent from Nanda2419 × Wangshuibai and a molecular marker map of more than 4000 cM constructed using RAPD, SSR and STS markers. The major QTLs for type I resistance in Wangshuibai were mapped to chromosomes 4BL and 5AS, and those for type II resistance were mapped to chromosomes 3BS. In addition, a QTL on chromosome 2B showed association with both types of resistance. These QTLs were verified with QTL nearisogenic lines. We found, by mapping QTLs for agronomical traits in the same population, that on chromosomes 4BL and 5AS the scab resistance QTLs co-located with QTLs for plant height, thousand grain weight or flag leaf width. However, these associations could be break down by recombinant selection. We concluded that Wangshuibai is a valuable scab resistance gene resources and marker assisted selection would be of great help for its better utilization.

Restricted access

The leaves of Hibiscus sabdariffa L. are one of the sources of food and traditional medicine. A combination of high-performance thin-layer chromatography (HPTLC) bioautographic assay with mass spectrometry (MS) has been performed to screen and identify the antioxidant compounds in the leaves of H. sabdariffa L. The crude extract of H. sabdariffa L. was separated on silica gel 60 HPTLC plates in an automatic developing chamber (ADC2) with toluene–ethyl acetate–formic acid–methanol (6:6:1.6:1, v/v) as the mobile phase. Antioxidant bands were visualized by dipping in 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent. Five antioxidant compounds were identified as neochlorogenic acid (1), chlorogenic acid (2), cryptochlorogenic acid (3), rutin (4), and isoquercitrin (5), which could be the predominant contributors to the antioxidant activity of the leaves of H. sabdariffa L. Furthermore, principal component analysis (PCA) was carried out to discriminate ten accessions of H. sabdariffa L. using an image-processing software. This simple HPTLC fingerprint assisted by PCA can be used as a reliable method for the discrimination of different accessions of H. sabdariffa L.

Restricted access