Search Results

You are looking at 11 - 20 of 132 items for

  • Author or Editor: L. Li x
  • All content x
Clear All Modify Search

A reborn interest has occurred during the last decade toward wheat landraces for broadening genetic basis of modern wheat cultivars. The investigation of molecular traits within and between existing landraces of wheat can help scientists to develop appropriate strategies for their efficient maintenance and exploitation. The present study dealt with the gliadin characterization of forty-seven wheat landraces collected from wheat mainly planted areas of China, each of which was represented by a sample of at least 43 individuals. Twelve accessions selected on the basis of gliadin analysis were investigated further using 21 SSR markers. The results proved that landraces of wheat are a mixture of variable individuals genetically distinguishable from each other. Twelve of the analyzed 47 accessions were observed to be homogeneous, while 35 (74.5%) of them were heterogeneous in their gliadin composition. In total, 122 gliadin pattern were observed. On average, 10.1% (Gst) of the total variation arose from differentiation among regions, and 89.9% was attributed to within-region variation. Furthermore, nineteen of the 21 SSR markers were polymorphic across all the populations. The total number of the amplified DNA products was 110, with a mean of 6.11 alleles per locus. The values of genetic diversity within each landrace population varied from 0.006 to 0.351. Implications for the management of this valuable genetic resource are discussed.

Restricted access

Youzimai is a widespread wheat landrace and has been used extensively in breeding programs in China. In order to assess the genetic variation between and within Youzimai accessions, samples of 31 landrace accessions of wheat, all called ‘Youzimai’, were collected from 6 geographic regions in China and evaluated using morphological traits, seedling resistance to powdery mildew, gliadin and microsatellite markers. Typical differences among accessions were observed in morphological characteristics. Forty-five (58.4%) of 77 assayed SSR markers showed polymorphism over the entire collection and total 226 alleles were identified with an average of 5.02 alleles per locus. SSR data indicated that the accessions from Hebei province were the most diverse, as evidenced by greatest number of region-specific alleles and highest diversity index. These accessions, therefore, probably experienced the most substantial morphological and molecular evolution as a result of various natural and anthropomorphic influences. On the other hand, differentiation in gliadin phenotypes was found among seeds within 80.6% of total accessions and average 61.5% of entire collections showed heterogeneous and comprised resistant plants in reaction to powdery mildew, suggesting the presence of a wide diversity within the wheat landrace. By developing an intimate knowledge of the available wheat genotypes, appropriate selections can be made for commercial application in order to conserve and exploit the diversity of the wheat landraces.

Restricted access

Abstract  

Enthalpies of dilution at 298.15 K of aqueous solutions of THF and 1,4-dioxane have been determined using flow microcalorimetry. The results obtained were used to determine the homotactic enthalpic interaction coefficients that characterize pair interactions of THF and 1,4-dioxane in aqueous solution. These are briefly discussed from the point of view of intermolecular interaction between the hydrated solute species.

Restricted access

Summary  

Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.

Restricted access

Abstract  

The dilution enthalpies of D-mannitol and D-sorbitol in aqueous sodium chloride solution at various concentrations have been determined by isothermal microcalorimetry at 298.15 K. The homogeneous enthalpic interaction coefficients over a quite large range of concentration of aqueous sodium chloride solutions have been calculated according to the excess enthalpy concept. The results show that enthalpic pairwise interaction coefficients (h 2) of D-mannitol and D-sorbitol are positive in aqueous sodium chloride solution and become more positive with increase of the concentration of sodium chloride. The results are interpreted in terms of the different conformations of the two polyols, solute-solute and solute-solvent interactions involved by solvent effects.

Restricted access

The purpose of this study was to evaluate the ability of Lactobacillus rhamnosus to bind patulin (PAT) in the buffer solution and apple juice. The binding of L. rhamnosus to PAT was reversible, which improved the stability of the bacterial complex. The ability to bind PAT can be enhanced with the inactivation of the strain by high temperature and acid treatment. Acid-treated bacteria had the highest PAT binding rate of 72.73±1.05%. The binding rates of acid and high temperature (121 °C) treatments were increased by 21.37% and 19.15%, respectively. L. rhamnosus showed the best detoxification ability to PAT at 37 °C, where the binding rate reached 50.9±1.03%. When the dose of inactivated bacteria powder was 0.02 g ml−1, the minimum concentration of PAT in apple juice was 0.37 µg ml−1. The addition of the L. rhamnosus inactivated powder did not affect the quality of the juice product and effectively bound the PAT in apple juice.

Restricted access

Hydrated goethite nanorodS

Vibration spectral properties, thermal stability, and their potential application in removing cadmium ions

Journal of Thermal Analysis and Calorimetry
Authors: X. Qiu, L. Lv, G. Li, W. Han, X. Wang, and L. Li

Abstract  

Vibration spectral properties and dehydration behaviors of goethite nanorods with diameters ranging from 13 to 32 nm were investigated using infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. All goethite nanorods were highly hydrated with physisorbed and chemisorbed water. As the diameters of goethite nanorods increased, the hydroxyl deformation vibration in the a-b plane showed a significant blue shift, while the Fe-O vibration in the a-b plane shifted to lower frequencies, indicating an enhancement of O-H bond and the ionicity of Fe-O in a-b plane. The hydrated goethite nanorods are also proved to be useful in environmental remedy because of their excellent removal ability of heavy metal ions.

Restricted access
Restricted access

Abstract  

The migration of 99Tc in unsaturated Chinese loess was investigated in-situ with a tracer method. Quartz containing 3H (HTO) and 99Tc (99TcO4 -) was introduced into the bottom of an experimental pit which was then backfilled at the field test site. Then core soil samples were taken and cut vertically into 1 cm long slices. The slice samples were analyzed by liquid scintillation techniques in the laboratory. The results indicate that the migration pattern of 99Tc was quite similar to that of 3H and the vertical diffusion coefficients of 99Tc and 3H were calculated as (4.7±0.4).10-2 cm2/d and (7.8±0.4).10-2 cm2/d, respectively.

Restricted access
Journal of Thermal Analysis and Calorimetry
Authors: Y. Y. Di, Z. C. Tan, L. W. Li, S. L. Gao, and L. X. Sun

Abstract

Low-temperature heat capacities of a solid complex Zn(Val)SO4·H2O(s) were measured by a precision automated adiabatic calorimeter over the temperature range between 78 and 373 K. The initial dehydration temperature of the coordination compound was determined to be, T D=327.05 K, by analysis of the heat-capacity curve. The experimental values of molar heat capacities were fitted to a polynomial equation of heat capacities (C p,m) with the reduced temperatures (x), [x=f (T)], by least square method. The polynomial fitted values of the molar heat capacities and fundamental thermodynamic functions of the complex relative to the standard reference temperature 298.15 K were given with the interval of 5 K.

Enthalpies of dissolution of the [ZnSO4·7H2O(s)+Val(s)] (Δsol H m,l 0) and the Zn(Val)SO4·H2O(s) (Δsol H m,2 0) in 100.00 mL of 2 mol dm−3 HCl(aq) at T=298.15 K were determined to be, Δsol H m,l 0=(94.588±0.025) kJ mol−1 and Δsol H m,2 0=–(46.118±0.055) kJ mol−1, by means of a homemade isoperibol solution–reaction calorimeter. The standard molar enthalpy of formation of the compound was determined as: Δf H m 0 (Zn(Val)SO4·H2O(s), 298.15 K)=–(1850.97±1.92) kJ mol−1, from the enthalpies of dissolution and other auxiliary thermodynamic data through a Hess thermochemical cycle. Furthermore, the reliability of the Hess thermochemical cycle was verified by comparing UV/Vis spectra and the refractive indexes of solution A (from dissolution of the [ZnSO4·7H2O(s)+Val(s)] mixture in 2 mol dm−3 hydrochloric acid) and solution A’ (from dissolution of the complex Zn(Val)SO4·H2O(s) in 2 mol dm−3 hydrochloric acid).

Restricted access